Fall Semester 2016- 20 weeks plus holiday break.
RAD 510- 2 hours- Simulation and Cross Sectional Anatomy in Medical Dosimetry
RAD 515- 4 hours- Medical Dosimetry Clinical I
RAD 520- 3 hours- The Physics of Medical Dosimetry
RAD 525- 3 hours- Seminar in Medical Dosimetry I
Semester Starts- August 15, 2016
Semester Ends- January 6, 2017

Spring Semester 2017- 20 weeks
RAD 530- 2 hours- The Essentials of Medical Dosimetry
RAD 535- 4 hours- Medical Dosimetry Clinical II
RAD 540- 3 hours- The Physics of Medical Dosimetry II
RAD 545- 3 hours- Seminar in Medical Dosimetry II
Semester Starts- January 9, 2017
Semester Ends- May 26, 2017

Summer Semester 2017- 10 weeks which includes one week to make up time.
RAD 550- 2 hours- Medical Dosimetry Clinical III
RAD 555- 2 hours- The Physics of Medical Dosimetry III
RAD 560- 2 hours- Seminar in Medical Dosimetry III
Semester Starts- May 29, 2017
Semester Ends- August 4, 2017
Last day in clinic if no makeup time July 28, 2017
Make-up Week- July 31, 2017 to August 4, 2017

Holidays
Students will not have class or clinical practicum on the following holidays:
New Year’s Day, Martin Luther King Day, Memorial Day, 4th of July, Labor Day, Veteran’s Day,
Day before Thanksgiving, Thanksgiving, Day after Thanksgiving, Christmas Eve, and Christmas.
Students must be present on all other holidays unless pre-approved by program director.
Table of Contents

1. Program Mission and Goals ... 1

2. Student Policies and Contact Information ... 2-7

3. Didactic Courses .. 8-38
 A. Master of Science Curriculum
 B. Course Syllabi
 C. Physics Class Topics

4. Clinical Practicum
 A. Goals and Assessment ... 39-40
 B. Schedule ... 41
 C. Growth Assessment Form ... 42
 D. Time Sheet ... 43
 E. Quality Assurance Guidelines ... 44
 F. Practicum Sites
 1) Brachytherapy Clinical Practicum ... 46-61
 a) Objectives
 b) Instructions to Evaluator and Student
 c) Clinical Competency List, Guidelines
 d) Competency Forms
 i. Tandem and Ovoids
 ii. Cylinder
 iii. 192Ir GYN HDR Interstitial Implant
 iv. 131I Thyroid Radiopharmaceutical Administration
 v. 125I Prostate Permanent Seed Implant
 vi. Breast HDR Implant
 e) Reference List/Reading Materials
 f) Quality Assurance Project
 2) Simulator Clinical Practicum .. 62-67
 a) Objectives
 b) References/Reading Material
 c) Instructions to Evaluator and Student
 d) Clinical Instructors, Competency List
 e) Competency Form
 3) Treatment Aids Paper ... 68-69
 a) Guidelines
 b) Objectives
 4) External Beam Clinical Practicum ... 70-75
 a) Goals and Objectives
 b) Schedule and Assignments
 c) Competency List
 d) Competency Evaluation Form
 e) Competency Written Report Guidelines
5) IMRT Clinical Practicum ..76-78
 a) Competency List
 b) Objectives and Competency Form
6) Chart Check Rotation .. 79-83
 a) Objectives
 b) Schedule and Resources
 c) Competency List
 d) Competency Form
 e) Pacemaker Assignment
7) Gamma Knife/Stereotactic Clinical Practicum 84
5. Written Reports .. 85
6. End of Semester Paperwork..86
7. Safety Orientation Attendance Sheet...87
8. Clinical Rotation Evaluation Sheet... 88
9. Appendix A- SIUC Medical Dosimetry Pregnancy Policy............... 89
10. Appendix B- Prenatal Radiation Exposure.................................... 91
11. Appendix C- Questions and Answers concerning Prenatal Radiation Exposure…….. 95
12. Appendix D- College of Applied Sciences and Arts Grievance Policy........ 101
13. Appendix E- Student Counseling Form....................................... 104
14. Appendix F- MRI Safety Screening Protocol............................... 105
15. Appendix G- Rubric for Grading Research Papers....................... 106
Mission

The mission of the Medical Dosimetry Program through Southern Illinois University Carbondale is to provide a quality program integrating education, research and service in order to meet the needs of the profession and improve health care of the people and communities we serve.

Program Goals

1. Prepare the student to practice as a competent entry level professional Medical Dosimetrist by offering a comprehensive curriculum and quality didactic/clinical instruction
2. Provide didactic and clinical experiences that lead to research in educational, professional, or health care issues relating to medical dosimetry
3. Provide avenues to students for professional development and growth within the profession.
4. Provide avenues for students to develop and apply skills in effective communication necessary for successful medical dosimetry practice
5. Provide avenues for students to develop and apply skills in critical thinking and problem-solving necessary for successful medical dosimetry practice
6. Provide a clinical and didactic environment which leads to the development of clinical skills and competence appropriate to an entry level medical dosimetrist.

Program Description

The Medical Dosimetrist is a member of Allied Health and Radiation Oncology Team. The Program is located at Southern Illinois University Carbondale with clinic sites spread out at a distance.

Course material and practicum covers radiation physics, radiation protection, dose calculations, tumor localization, external beam treatment planning, brachytherapy, quality assurance, medical imaging/anatomy, clinical radiation oncology, and radiobiology. Clinical practicum includes external beam treatment planning, brachytherapy treatment, preparation and planning, chart reviews and dose calculations, record and verify system data entry, simulation (conventional and CT-simulation), treatment aid fabrication, treatment machine quality assurance, stereotactic treatment planning, gamma knife, IMRT planning and treatment. Special project assignments, conference attendance and presentation, and journal article reviews are also part of the curriculum.

The program is accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT). It meets the formal education eligibility criteria for the national certification exam following graduation and six months of full-time employment, as required by the Medical Dosimetry Certification Board.
Program Director Contact Information
Scott Collins
Medical Dosimetry Program Director
School of Allied Health, MC 6615
College of Applied Sciences and Arts
Southern Illinois University Carbondale
Carbondale, Illinois 62901
Office: 618-453-8800
Fax: 618-453-7020

Clinic Coordinator Contact Information
Rick McKinnies
Medical Dosimetry Clinic Coordinator
School of Allied Health, MC 6615
College of Applied Sciences and Arts
Southern Illinois University Carbondale
Carbondale, Illinois 62901
Office: 618-453-7260
Fax: 618-453-7020

Hours
7:30am – 4:30pm
Hours vary depending upon the clinical rotation requirements. Students may need to remain in clinic beyond the normal hours in order to complete a project related to their learning.

<table>
<thead>
<tr>
<th>Clinic Site</th>
<th>Phone Number</th>
<th>Clinical Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexian Brothers Medical Center</td>
<td>847-956-5143</td>
<td>Karen Carden and Annabelle Jankowiak</td>
</tr>
<tr>
<td>Alexian Brothers Medical Center</td>
<td>847-528-4545</td>
<td>Karen Carden and Annabelle Jankowiak</td>
</tr>
<tr>
<td>Alton Memorial Hospital</td>
<td>618-433-7979</td>
<td>Chad Gerber, Stacey Ballard and Sue Haselhorst</td>
</tr>
<tr>
<td>Alton Memorial Hospital</td>
<td>618-433-7979</td>
<td>Chad Gerber, Stacey Ballard and Sue Haselhorst</td>
</tr>
<tr>
<td>Altria Cancer Center</td>
<td>701-780-5835 and 701-780-5418</td>
<td>Kent Perrin, Aaron Kempenich</td>
</tr>
<tr>
<td>Baptist Health Paducah</td>
<td>270-575-2724</td>
<td>Dana Ellinger and Robert Gandy</td>
</tr>
<tr>
<td>Barnes-Jewish Hospital</td>
<td>314-454-7507</td>
<td>Rudi Bertrand, Andrew Lindsay, Lisa Westfall, and Tami Jamruk</td>
</tr>
<tr>
<td>Bay Regional Medical Center- Jeppesen Radiation Oncology Center</td>
<td>989-667-6670</td>
<td>Chris Cossin and Michelle Davis</td>
</tr>
<tr>
<td>Bay Regional Medical Center- Saginaw Radiation Oncology Center</td>
<td>989-538-5250 or 989-538-5264</td>
<td>April McGinnies and John Szelesi</td>
</tr>
<tr>
<td>Cancer Treatment Center, Memorial & St. Elizabeth Health Care Services, LLP</td>
<td>618-236-1000</td>
<td>Sara Allen, Chad Gerber, and Sue Haselhorst</td>
</tr>
<tr>
<td>Chancellor Center for Oncology</td>
<td>812-858-2266</td>
<td>Wesley Groves</td>
</tr>
<tr>
<td>CHI Health Bergan Mercy Hospital</td>
<td>402-398-5902</td>
<td>Rodney Tjeerdmsma, Rick Zastera, and Kristin Kirlin</td>
</tr>
<tr>
<td>CHI Health Good Samaritan</td>
<td>308-627-6866</td>
<td>Dale Brummer and Brian Hill</td>
</tr>
<tr>
<td>CHI Health Immanuel Hospital</td>
<td>402-330-4367</td>
<td>Mark Cipolla and Jason Revers</td>
</tr>
<tr>
<td>CHI Health Lakeside Hospital</td>
<td>402-330-4367</td>
<td>Mark Cipolla and Jason Revers</td>
</tr>
<tr>
<td>Decatur Memorial Hospital</td>
<td>217-876-2350</td>
<td>Kim Wolpert</td>
</tr>
<tr>
<td>East Jefferson Radiation Oncology</td>
<td>504-456-5139</td>
<td>Jeff Roberson, Carl Buhler and Tracie Espenan</td>
</tr>
<tr>
<td>Emory Clinic</td>
<td>404-778-3892</td>
<td>Justin Roper and Mital Tejani</td>
</tr>
<tr>
<td>Hospital Name</td>
<td>Address</td>
<td>Contact Person(s)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Emory Clinic Department of Radiation Oncology</td>
<td>University Hospital Midtown, 550 Peachtree St. NE, Atlanta, GA 30308</td>
<td>Mital Tejani and Justin Roper</td>
</tr>
<tr>
<td>Essentia Health, South University Clinic</td>
<td>1702 South University Drive, Fargo, ND 58103</td>
<td>Gary Withnell and James Withnell</td>
</tr>
<tr>
<td>Evansville Cancer Center</td>
<td>700 N. Burkhardt Road, Evansville, IN 47715</td>
<td>Joshua Hayes</td>
</tr>
<tr>
<td>Genesis HealthCare – San Diego</td>
<td>2466 First Avenue, Suite B, San Diego, CA 92101</td>
<td>George Mardirossian and Steven Hardy</td>
</tr>
<tr>
<td>Henry Ford Health System</td>
<td>2799 W. Grand Blvd, Detroit, MI 48202</td>
<td>Indrin Chetty, Svetlana Rousse, and Ning Wen</td>
</tr>
<tr>
<td>Kansas City Cancer Center LLC</td>
<td>4881 NE Goodview Circle, Lee’s Summit, MO 64064</td>
<td>Jacqueline Smith, Terri Ashley and Debabrata Bhaduri</td>
</tr>
<tr>
<td>Kansas City Cancer Center LLC</td>
<td>12200 W. 110th Street, Overland Park, KS 66210</td>
<td>Valerie Radice, Seth Rhodes, and Jeanine Turner</td>
</tr>
<tr>
<td>Kansas City Cancer Center LLC</td>
<td>1000 E. 101st Terrace, Kansas City, MO 64131</td>
<td>Dana Heinzlerling</td>
</tr>
<tr>
<td>Kansas City Cancer Center LLC</td>
<td>8700 N. Greenhills Road, Kansas City, MO 64154</td>
<td></td>
</tr>
<tr>
<td>Lehigh Valley Health Network – Allentown</td>
<td>1240 S. Cedar Crest Blvd, Allentown, PA 18103</td>
<td>Noreen Schneck and John Niemkiewicz</td>
</tr>
<tr>
<td>MidMichigan Medical Center-Midland</td>
<td>4005 Orchard Drive, Midland, MI 48670</td>
<td>Tiffany Smith, Courtney Szelloz, Carol Brines, and Victor Hosfeld</td>
</tr>
<tr>
<td>Missouri Cancer Care, H.W. Koenig Cancer Center</td>
<td>400 Medical Plaza, Suite 100, Lake Saint Louis, MO 63367</td>
<td>Matthew White and Janice Manolis</td>
</tr>
<tr>
<td>Montgomery Cancer Center</td>
<td>4145 Carmichael Road, Montgomery, AL 36106-2801</td>
<td></td>
</tr>
<tr>
<td>Mt. Vernon Radiation Therapy Center</td>
<td>4114 Veterans Memorial Drive, Mt. Vernon, IL 62804</td>
<td>Michael Mathy</td>
</tr>
<tr>
<td>North Kansas City Hospital</td>
<td>2800 Clay Edwards Drive, North Kansas City, MO 64116</td>
<td>John Otis</td>
</tr>
<tr>
<td>North Macomb Radiation Oncology Center</td>
<td>17900 23 Mile Road, Suite 103, Macomb Township, MI 48044</td>
<td>Kimberly Taylor, Martha Phillips, Gayle Vesco, Kimberly Secor, Rachel Powell, Lorraine Carroll, Allan Reyes, Jeff Colvin, Roy Taylor, and Carol Hackenberger</td>
</tr>
<tr>
<td>Northwestern Memorial Hospital Dept. of Radiation Oncology</td>
<td>251 E Huron St, Galert Pavilion, LC-178, Chicago, IL 60610</td>
<td>Dr. Vythialingam Sathianseelan, Fatima Pothisawala, and Jeff Smith</td>
</tr>
<tr>
<td>Ochsner Clini Foundation</td>
<td>1514 Jefferson Highway, New Orleans, LA 70121</td>
<td>Raj Mitra</td>
</tr>
<tr>
<td>OHSU Knight Cancer Clinic</td>
<td>15700 SW Greystone CT, Beaverton, OR 97006</td>
<td>Wolfram Laub and Barbara Agrimson</td>
</tr>
<tr>
<td>Oregon Health and Science University Dept of Radiation Medicine, KPV4</td>
<td>3181 S.W. Sam Jackson Park Road, L337 Portland, OR 97239</td>
<td>Wolfram Laub and Barbara Agrimson</td>
</tr>
<tr>
<td>Phoebe Putney Memorial Hospital Medical Tower I, Lower Level</td>
<td>425 Third Avenue, Albany, GA 31701</td>
<td>Bipin Agarwal, Wendy Montgomery, and Lisa Dismuke</td>
</tr>
<tr>
<td>ProMedica Flower Hospital DBA 5200 Harroun Rd. Sylvania, OH</td>
<td>419-824-8823, 419-824-1017</td>
<td>Jean Roose, Qin-Sheng Chen, and Sharon Nugent</td>
</tr>
<tr>
<td>Rush University Medical Center</td>
<td>500 S. Paulina Street, Chicago, IL 60612</td>
<td>Julius Turian and James Chu</td>
</tr>
<tr>
<td>Scott and White McClintion Cancer Center</td>
<td>150 Hillcrest Medical Blvd, Waco, TX 76712</td>
<td>Andrea Chance</td>
</tr>
<tr>
<td>Scott and White Memorial Hospital</td>
<td>2401 S 31st Street, Temple, TX 76508</td>
<td>Dr. Dhanaanithy Rangaraj, Karen Stumph, and Dr. Geethpria Palanswamy</td>
</tr>
<tr>
<td>Siteman Cancer Center</td>
<td>150 Entrance Way, St. Peters, Missouri 63376</td>
<td>Bruce Gu and Megan Brown</td>
</tr>
<tr>
<td>Hospital Name</td>
<td>Address</td>
<td>Phone</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Southeast Missouri Hospital</td>
<td>1701 Lacey Street Cape Girardeau, MO 63701</td>
<td>573-519-4700</td>
</tr>
<tr>
<td>Southeast Nebraska Cancer Center</td>
<td>3901 Pine Lake Road, Suite 111 Lincoln, NE 68516</td>
<td>402-481-0690</td>
</tr>
<tr>
<td>Spectrum Health Hospitals</td>
<td>Lemmen Holm Cancer Pavilion 145 Michigan NE Grand Rapids, MI 49503</td>
<td>616-391-1816</td>
</tr>
<tr>
<td>SSM DePaul Health Center</td>
<td>12303 DePaul Drive St. Louis, Missouri 63044-2588</td>
<td>314-344-6992 Ext. 2847</td>
</tr>
<tr>
<td>SSM St. Joseph Medical Park</td>
<td>1475 Kisker Rd. Saint Charles, MO 63304</td>
<td>314-941-1030</td>
</tr>
<tr>
<td>SSM St. Mary's Health Center</td>
<td>6420 Clayton Road Richmond Heights, MO 63117-1872</td>
<td>636-496-4616</td>
</tr>
<tr>
<td>SSM St. Mary's Health Center-Fenton</td>
<td>1011 Bowles Ave. Suite G50 Fenton, MO 63026</td>
<td>636-496-4616</td>
</tr>
<tr>
<td>St. Alexius Medical Center</td>
<td>1555 Barrington Rd. Hoffman Estates, IL 60199</td>
<td>947-755-8739</td>
</tr>
<tr>
<td>St. Anthony’s Medical Center</td>
<td>10010 Kennerly Road St. Louis, MO 63128</td>
<td>314-525-4282</td>
</tr>
<tr>
<td>St. Francis Hospital</td>
<td>6161 South Yale Tulsa, Oklahoma 74136</td>
<td>918-494-1585</td>
</tr>
<tr>
<td>St. John Hospital, Van Elslander Cancer Center</td>
<td>19229 Mack Ave, Suite 10 Grosse Pointe Woods, MI 48236</td>
<td>586-573-5863 or 313-547-3125</td>
</tr>
<tr>
<td>St. John Macomb-Oakland Hospital</td>
<td>Webber Cancer Center 11800 E. 12 Mile Road Warren, MI 48093</td>
<td>586-573-7598</td>
</tr>
<tr>
<td>St. John Providence Health System</td>
<td>Providence & Providence Park Hospitals 47601 Grand River Ave Novi, MI 48075</td>
<td>248-849-8619</td>
</tr>
<tr>
<td>St. John's Hospital</td>
<td>800 East Carpenter Street Springfield, IL 62769</td>
<td>217-544-6464 Ext. 55666</td>
</tr>
<tr>
<td>St. Luke's Hospital</td>
<td>1235 E. Cherokee Springfield, MO 65804</td>
<td>417-820-9391</td>
</tr>
<tr>
<td>St. Mary’s Hospital</td>
<td>400 North Pleasant Avenue Centralia, IL 62801</td>
<td>314-542-4998</td>
</tr>
<tr>
<td>St. Vincent’s Healthcare</td>
<td>1 Shreiff Way Jacksonville, FL 32204</td>
<td>904-308-8604</td>
</tr>
<tr>
<td>Tallahassee Memorial Healthcare</td>
<td>1300 Miccosukee Road Tallahassee, Florida 32308</td>
<td>850-431-5255</td>
</tr>
<tr>
<td>Tallahassee Memorial Cancer Center</td>
<td>1300 Miccosukee Road Tallahassee, Florida 32308</td>
<td>850-431-5255</td>
</tr>
<tr>
<td>The Advanced Center for Radiation Medicine</td>
<td>Northwestern Lake Forest Hospital 660 N. Westmoreland Road Lake Forest, IL 60045</td>
<td>913-588-3600</td>
</tr>
<tr>
<td>The University of Kansas Hospital Radiation Oncology, Bldg 58 3901 Rainbow Blvd Kansas City, Kansas 66160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas Johns Cancer Hospital, Johnston Willis Campus</td>
<td>1401 Johnston Willis Drive Richmond, VA 23235</td>
<td>804-330-2376</td>
</tr>
<tr>
<td>UF Health Cancer Center – Orlando Health</td>
<td>1400 South Orange Avenue Orlando, FL 32806</td>
<td>621-841-8658</td>
</tr>
<tr>
<td>University of Utah Huntsman Cancer Hospital</td>
<td>1950 Circle of Hope Drive Salt Lake City, Utah 84112</td>
<td>801-587-4054</td>
</tr>
<tr>
<td>Via Christi Hospitals Wichita</td>
<td>929 N. St. Francis Street Wichita, KS 67214</td>
<td>316-268-6023</td>
</tr>
<tr>
<td>West Michigan Cancer Center</td>
<td>200 North Park Street Kalamazoo, MI 49007</td>
<td>616-373-7407</td>
</tr>
</tbody>
</table>
Emergency/Safety Orientation
The first day of attending a new clinical facility a student will participate in an emergency procedures/safety orientation specific to the facility. This at a minimum must address hazards (fire, electrical, chemical), emergency preparedness, medical emergencies, HIPAA, and Standard Precautions. Radiation safety should also be discussed.

Attendance
Students must report to assigned class or clinical rotation for the duration of hours specified by schedule, unless pre-approved by program director for absence or tardiness. If a student misses 4 days throughout the program their clinical grade will be lowered one letter grade. If a student missed six or more days during the year, the student can be removed from the program.

The student is expected to report to the clinical facility at the designated time. Tardiness is not considered responsible, professional behavior. Three late arrivals, each in excess of 10 minutes, will be considered the equivalent of one absence for grade determination. It is the student's responsibility to call the Clinical Instructor within 30 minutes prior of the beginning of the clinical time period if you are not going to be present or if you are going to be late. Failure to do this will result in two points being deducted from the final clinical grade average for each infraction.

Vacation
Students receive ten days of vacation, which must be taken during the one year program. One of the weeks will be taken around the Christmas and New Year break and the other will be at the end of the program year. Students are allowed one personal day and two interview days while in the program. The interview days require documentation and may only be taken during the spring or summer semesters.

Holiday
Students will not have class or clinical practicum on hospital holidays: New Year’s Day, Martin Luther King Day, Memorial Day, 4th of July, Labor Day, Veteran’s Day, Day before Thanksgiving, Thanksgiving, Day after Thanksgiving, Christmas Eve, and Christmas. Students must be present on all other holidays unless pre-approved by program director.

Sick Time
Student must contact clinic instructor/program director in all cases if sick, by 7:45 a.m. that morning. Any time missed by student due to calling in sick must be made up. If student misses class time, he/she is responsible to contact instructor and make up missed information – notes, quiz, or exam. If student misses clinical rotation he/she must make up time within scheduled dates of particular clinical rotation – extra hours/day - early and late. Students may also make up time during scheduled vacations. Student may not exceed more than 40 hours/week.

Inclement Weather Policy
If bad weather (snow, ice, flooding, tornado, earthquake, etc.) occurs on a clinical day, the student is responsible for finding out if the local university in the clinical site area is closed. Make sure to coordinate which university to use with your clinic instructor. If they are closed due to hazardous road conditions, then the student is excused from going to clinical even though SIUC may be open. The student must write “Snow Day” on this/her Time Sheet, and this absence will be verified by the Clinical Supervisor. If the local university is open but the student cannot get to his/her clinical site, then he/she must make up the day.

Please note: All unexcused “snow days” must be made-up. If the public elementary schools are closed due to temperature extremes (frigid cold, oppressive heat, etc.) the student is still expected to go to clinical as originally scheduled.

Dress Code
All clothing and jewelry must be consistent with professional/business dress standards applicable to the work responsibilities involved, and must be appropriate for reasonably anticipated public contact. Students should wear a white mid length lab coat at all times. Students dress clothes should be neatly pressed for a professional appearance. Males should also wear a tie. Dress shoes should also be worn however no open toe dress shoes are allowed.

All students must wear the SIU student name badge each clinical day. For facilities that supply the student with a separate badge, the identification badge must be worn so that the picture, name and department are easily visible at all times.

Hair, including beards and mustaches, is to be clean, neatly groomed, and kept in such a way as not to interfere with student duties or safety. Hair that is longer than the collar on males, or longer than the shoulder on females, is to be pulled back and fastened to prevent contamination and to decrease the spread of microorganisms such as pseudomonas and staphylococcus. Only natural hair colors are allowed.
Make up, perfume and cologne are to be moderately applied.

Fingernails are to be clean, trimmed, and extend no further than 1/4" beyond fingertips. Clear or conservative light-colored nail polish may be worn.

No visible tattoos area allowed. Piercings are limited to ears only (one set of earrings).

Disability, Illness, Pregnancy
The Program Director will determine if a student may continue the Program should illness or disability arise. The decision will be made on an individual basis, taking into account the nature and degree of the disability, as well as a physician’s recommendation that the student may continue the program.

If a student becomes pregnant while in the program the pregnancy policy in this handbook will be followed.

Students must make up all missed clinic and class time. Students unable to complete assigned time commitment by end of program, will not graduate until they successfully complete class and clinical rotations.

Health Insurance – Emergency Situation
If a SIU student has an emergency they are to go to a local hospital ER or Urgent Care clinic.

Student Resources
For a complete list of student resources to include counseling, testing, and financial aid services visit: http://www.siuc.edu/resources/student.html

Radiation Monitoring
All students must wear a personnel monitoring device at all times in the clinic. Exposure reports will be available for review once processed via Desire2Learn. If a dose reading exceeds normal limits (≥0.125 Rem or ≥1.25 mSv per quarter) the student will be contacted by SIUC’s RSO or the program personnel. In the event an accidental exposure occurs, the student must notify the Program Director regarding the incident. The Program Director will work with the Radiation Safety Officer and make a plan of action for the event. If the badge is lost, damaged, or any other concerns, please contact the Program Director.

Direct Supervision Policy
All procedures performed by a student while at clinical must be directly supervised by a qualified practitioner. This individual will review the procedure in relation to the student’s achievement, evaluates the condition of the patient in relation to the student’s knowledge, is present during the procedure, and reviews and approves the procedure. All clinical work performed by a student must be checked prior to clinical implementation. Anytime a student is having direct contact with a patient, facility personnel must be present.

Corrective Action and Grievance Process
The Medical Dosimetry Program Director must address issues in which the student fails to follow dosimetry program curriculum guidelines or university policies.

If issue is related to curriculum or clinical policy,
- Program Director determines necessary course of action and presents to student.
- If student wishes to appeal the Program Director’s decision, the student may contact the Director of the School of Allied at 618-453-8860. Grievance procedures are possible through the College of Applied Sciences and Arts Grievance Committee.

If the student wishes to contact the Joint Review Committee Education in Radiologic Technology (JRCERT) regarding a situation they may do so with the following information: All JRCERT Standards for Accreditation are listed on their website as well.

JRCERT
20 N. Wacker Drive
Suite 2850
Chicago, IL 60606-3182
Phone: (312) 704-5300
Fax: (312) 704-5304
E-mail: mail@jrcert.org
Website: www.jrcert.org

Distance Learning
All didactic instruction will be via distance learning technology (DL). The lectures will be recorded and posted to SIUC’s Desire2Learn Learning system. This will allow the students to watch the lectures at a later date if they want to review the material or in case there is a network problem.
Students will need to register with the Desire2Learn system at the following web address: https://online.siu.edu

Students will be responsible for posting all assignments through Desire2Learn. All quizzes and tests will be administered via this system as well. Students will use the Desire2Learn software while taking these quizzes/tests.

Classroom behavior/Conduct Code:
The classroom is a “safe” environment for students. The focus will be on learning. Causing disruptions, harassment of other students, foul language, disrespect for others, or entertaining at someone else’s expense will not be tolerated. For a detailed explanation of Student Code, consult “Student Conduct Code” found in Important information for siuc students, faculty, and staff, pp. 22-32. All other rules of the code must be followed. The Student Conduct Code is available at: http://www.siuc.edu/~policies/policies/conduct.html

Workplace Hazards, Harassment, Communicable Disease, and Substance Abuse
In the event that a student is concerned with workplace hazards, harassment, communicable diseases, or substance abuse, he/she should contact the Program Director or faculty immediately. The Program Director will work with the facility to ensure the safety of the student.

Academic Honesty:
All students are expected to adhere to a strict code of academic honesty. Academic dishonesty will be addressed according to the “Policies and Procedures Applicable to Academic Dishonesty” as stated in the “Important Information for Students, Faculty, & Staff” booklet.

From the “Student Conduct Code”, section II, article A:

Acts of Academic Dishonesty:

1. Plagiarism, representing the work of another as one’s own work;
2. Preparing work for another that is to be used as that person’s own work;
3. Cheating by any method or means;
4. Knowingly and willfully falsifying or manufacturing scientific or educational data and representing the same to be the result of scientific or scholarly experiment or research;
5. Knowingly furnishing false information to a university official relative to academic matters;
6. Soliciting, aiding, abetting, concealing, or attempting conduct in violation of this code.

Sanctions will be imposed for violations of this policy in accordance with the Student Conduct Code. A copy of the “Important Information for Students, Faculty & Staff” booklet can be obtained from the Office of the Vice Chancellor for Student Affairs, Mailcode 4308, Southern Illinois University, Carbondale, IL 62901-4308.
Master of Science Curriculum

Fall Semester

RAD 510-2 Simulation and Cross Sectional Anatomy in Medical Dosimetry - This course covers the conventional and CT simulation techniques used in initiating radiation therapy for cancer patients. Identification of cross-sectional anatomy at different anatomical locations within the human body is also reviewed. This course is twenty weeks in length. Prerequisite: Admission to the Medical Dosimetry Program.

RAD 515-4 Medical Dosimetry Clinical I - This is the first course of a three course sequence. During the three course sequence, students will complete eight clinical rotations including Brachytherapy, Simulation, Gamma Knife, Treatment Aids, IMRT, External Beam, Physics, Special Measurements and QA. The length of these rotations varies from one to eleven weeks. During this course students will perform two to four of these rotations depending on the rotation schedule. While in the clinical setting students will observe and work directly with a medical dosimetrist. Emphasis is given on learning and understanding the role and responsibilities of a medical dosimetrist in the clinical setting. This course is twenty weeks in length. Prerequisite: Admission to the Medical Dosimetry Program.

RAD 520-3 The Physics of Medical Dosimetry I - This course covers the following topics: Radiologic Physics, production of x-rays, radiation treatment and simulation machines, interactions of ionizing radiation, radiation measurements, dose calculations, computerized treatment planning, dose calculation algorithms, electron beam characteristics, and brachytherapy physics and procedures. This course is twenty weeks in length. Prerequisite: Admission to the Medical Dosimetry Program.

RAD 525-3 Seminars in Medical Dosimetry I - This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is twenty weeks in length. Prerequisite: Admission to the Medical Dosimetry Program.

Spring Semester

RAD 530-2 The Essentials of Medical Dosimetry - This course covers the various quality assurance procedures performed in a radiation oncology department. Also included are various statistics topics to educate the student in becoming a good consumer of medical dosimetry research literature. Professional development, billing/coding, HIPAA, and professional service are also addressed. This course is twenty weeks in length. Prerequisite: A grade of “C” or better in RAD 510, RAD 515, RAD 520, and RAD 525.
RAD 535-4 Medical Dosimetry Clinical II - This is the second of a three course sequence. During the three course sequence, students will complete eight clinical rotations including Brachytherapy, Simulation, Gamma Knife, Treatment Aids, IMRT, External Beam, Physics, Special Measurements and QA. The length of these rotations varies from one to eleven weeks. During this course students will perform two to four of these rotations depending on the rotation schedule. While in the clinical setting students will observe and work directly with a medical dosimetrist. Emphasis is given on learning and understanding the role and responsibilities of a medical dosimetrist in the clinical setting. This course is twenty weeks in length. Prerequisite: A grade of “C” or better in RAD 515.

RAD 540-3 The Physics of Medical Dosimetry II – This course covers the following topics: imaging for radiation oncology, IMRT, stereotactic radiosurgery, special procedures, particle therapy, hyperthermia, and radiation safety. This course is twenty weeks in length. Prerequisite: A grade of “C” or better in RAD 520.

RAD 545-3 Seminar in Medical Dosimetry II - This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. Prerequisite: This course is twenty weeks in length. Prerequisite: A grade of “C” or better in RAD 525.

Summer Semester

RAD 550-2 Medical Dosimetry Clinical III - This is the third course of a three course sequence. During the three course sequence, students will complete eight clinical rotations including Brachytherapy, Simulation, Gamma Knife, Treatment Aids, IMRT, External Beam, Physics, Special Measurements and QA. The length of these rotations varies from one to ten weeks. During this course students will perform one to two of these rotations depending on the rotation schedule. While in the clinical setting students will observe and work directly with a medical dosimetrist. Emphasis is given on learning and understanding the role and responsibilities of a medical dosimetrist in the clinical setting. This course is ten weeks in length. Prerequisite: A grade of “C” or better in RAD 535.

RAD 555-2 The Physics of Medical Dosimetry III – This course covers the following topics: Monitor Unit (MU) calculations, point dose calculations and radiation biology. This course is ten weeks in length. Prerequisite: A grade of “C” or better in RAD 540.

RAD 560-2 Seminar in Medical Dosimetry III - This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is ten weeks in length. Prerequisite: A grade of “C” or better in RAD 545.
COURSE DEFINITION:
RAD 510-2 Simulation and Cross Sectional Anatomy in Medical Dosimetry - This course covers the conventional and CT simulation techniques used in initiating radiation therapy for cancer patients. Identification of cross-sectional anatomy at different anatomical locations within the human body is also reviewed. This course is twenty weeks in length. Prerequisite: Admission to the Medical Dosimetry Program.

COURSE OBJECTIVES:
1. Demonstrate an understanding of Radiation Safety.
2. Demonstrate an understanding of CT simulation procedures.
3. Demonstrate an understanding of conventional simulation procedures.
4. Demonstrate an understanding of the cross sectional anatomy of the human body.
5. Demonstrate an understanding of the role of a medical dosimetrist.

COURSE OUTLINE:

Topics
1. Radiation Safety
2. CT simulation procedures
3. Conventional simulation procedures
4. Cranial cross sectional anatomy
5. Thorax cross sectional anatomy
6. Abdominal cross sectional anatomy
7. Pelvic cross sectional anatomy

COURSE REQUIREMENTS:
Purchase all texts, attend all lectures, and complete required examinations and quizzes. Participate in clinical internship. Purchase a T130XA scientific calculator.

PREREQUISITES: Admittance to the Medical Dosimetry Program.

TEXTBOOKS:

Required:

Optional: (Students typically use clinical sites’ copy)
3. Students should reference the nccn.org website for information. You will have to create a user name and login.
GRADING SCALE:
- 90-100 A
- 80-89 B
- 70-79 C
- <70 Failing

Grades will be determined by:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Performance</td>
<td>70%</td>
</tr>
<tr>
<td>Quizzes/Homework/Presentations</td>
<td>30%</td>
</tr>
</tbody>
</table>

Note: An overall GPA of 3.0 or greater in all graduate coursework is required to successfully complete the Medical Dosimetry Program. This is a SIUC Graduate School Policy.
RAD 515
Medical Dosimetry Clinical I
Fall Semester Syllabus

COURSE DEFINITION:
RAD 515-4 Medical Dosimetry Clinical I - This is the first course of a three course sequence. During the three course sequence, students will complete eight clinical rotations including Brachytherapy, Simulation, Gamma Knife, Treatment Aids, IMRT, External Beam, Physics, Special Measurements and QA. The length of these rotations varies from one to eleven weeks. During this course students will perform two to four of these rotations depending on the rotation schedule. While in the clinical setting students will observe and work directly with a medical dosimetrist. Emphasis is given on learning and understanding the role and responsibilities of a medical dosimetrist in the clinical setting. This course is twenty weeks in length. Prerequisite: Admission to the Medical Dosimetry Program.

COURSE OBJECTIVES:

1. Demonstrate an understanding of the basic clinical concepts of medical dosimetry.
2. Demonstrate an understanding of theory and principles of operation of treatment planning computers.
3. Demonstrate an understanding of the different types of radiation production.
4. Understand and calculate radiation attenuation and decay.
5. Demonstrate an understanding of the different types of radiation detectors.
6. Demonstrate a basic understanding of treatment planning.
7. Demonstrate an understanding of the role of a medical dosimetrist.

COURSE OUTLINE:

Topics
1. Clinical rotations
2. Perform clinical competencies
3. External beam calculations
4. Brachytherapy calculations
5. Physics procedures

COURSE REQUIREMENTS:

Purchase all texts. Participate in clinical internship and purchase a T130XA scientific calculator.

PREREQUISITES: Admittance to the Medical Dosimetry Program.

TEXTBOOKS:

Required:

Optional: (Students typically use clinical sites’ copy)
GRADING SCALE:
- 90-100 A
- 80-89 B
- 70-79 C
- <70 Failing

Grades will be determined by:

<table>
<thead>
<tr>
<th>Grading Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth Evaluations</td>
<td>50%</td>
</tr>
<tr>
<td>Clinical Competencies & Reports</td>
<td>40%</td>
</tr>
<tr>
<td>Weekly Journal</td>
<td>10%</td>
</tr>
</tbody>
</table>

Note: An overall GPA of 3.0 or greater in all graduate coursework is required to successfully complete the Medical Dosimetry Program. This is a SIUC Graduate School Policy.

If a student receives two or more Growth Evaluations that are an 80% or below during one semester; their continuation in the Medical Dosimetry Program is at the discretion of the Program Director and Clinical Instructor. It is expected that all students consistently show “normal progress” in the development of their dosimetry skills and always demonstrate a positive attitude. Not meeting the normal progress guidelines justifies removal from the program as well. A grade of an “F” will be given for the semester in which the student is removed from the program.

If a student is removed from a clinical site for behavioral reasons, they must leave immediately and will not be allowed to continue the Medical Dosimetry Program. A grade of an “F” will be given for the semester they are removed.

All students must meet the minimum number of clinical competencies and show normal progress per rotation to continue with the program as there is no time available to go back and retake a specific clinical rotation. All clinical competencies must be completed by the end of the summer semester to successfully complete the program. If has 7 total failed competencies (throughout entire program) or fails a particular competency 4 times, a student will be removed from the program. A grade of an “F” will be given for the semester in which the student does not fulfill the competency requirements.

If a student misses 4 days throughout the program their clinical grade will be lowered one letter grade. If a student misses six or more days during the year, the student can be removed from the program.
COURSE DEFINITION:
RAD 520-3 The Physics of Medical Dosimetry I- This course covers the following topics: Radiologic Physics, production of x-rays, radiation treatment and simulation machines, interactions of ionizing radiation, radiation measurements, dose calculations, computerized treatment planning, dose calculation algorithms, electron beam characteristics, and brachytherapy physics and procedures. This course is twenty weeks in length. Prerequisite: Admission to the Medical Dosimetry Program.

COURSE OBJECTIVES:

1. Demonstrate an understanding of radiation physics for photons and electrons.
2. Demonstrate an understanding of the different types of radiation production.
3. Demonstrate an understanding of radiation dose calculations and algorithms.
4. Understand brachytherapy procedures and calculate radiation attenuation and decay.
5. Demonstrate an understanding of the different types of radiation detectors.
6. Demonstrate an understanding of general treatment planning.

COURSE OUTLINE:

Topics
1. Radiation physics
2. Radiation generators
3. External beam calculations
4. Brachytherapy calculations
5. Treatment planning
6. Electron beam physics

COURSE REQUIREMENTS:

Purchase all texts, attend all lectures, and complete required examinations, quizzes, and homeworks. Purchase a T130XA scientific calculator.

PREREQUISITES: Admittance to the Medical Dosimetry Program.

TEXTBOOKS:

Required:

Optional: (Students typically use clinical sites’ copy)
GRADING SCALE:

90-100 A
80-89 B
70-79 C
<70 Failing

Grades will be determined by:

Test Performance 65%
Quizzes/Homework 35%

Note: An overall GPA of 3.0 or greater in all graduate coursework is required to successfully complete the Medical Dosimetry Program. This is a SIUC Graduate School Policy.
COURSE DEFINITION:
RAD 525-3 Seminars in Medical Dosimetry I - This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is twenty weeks in length. Prerequisite: Admission to the Medical Dosimetry Program.

COURSE OBJECTIVES:

1. Demonstrate an understanding of the basic clinical concepts in radiation oncology.
2. Demonstrate an understanding of how different cancers are treated.
3. Demonstrate an understanding of the latest technologies in radiation oncology.
4. Demonstrate a basic understanding of treatment planning.
5. Demonstrate an understanding of the role of a medical dosimetrist.

COURSE OUTLINE:

Topics
1. Clinical concepts in radiation oncology
2. Treatment methods
3. New technologies
4. Treatment planning

COURSE REQUIREMENTS:

Attend clinical conferences or perform journal article summaries.

PREREQUISITES: Admittance to the Medical Dosimetry Program.

TEXTBOOKS: NA

GRADING SCALE:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>A</td>
</tr>
<tr>
<td>80-89</td>
<td>B</td>
</tr>
<tr>
<td>70-79</td>
<td>C</td>
</tr>
<tr>
<td><70</td>
<td>Failing</td>
</tr>
</tbody>
</table>

Note: An overall GPA of 3.0 or greater in all graduate coursework is required to successfully complete the Medical Dosimetry Program. This is a SIUC Graduate School Policy.
COURSE DEFINITION:
RAD 530-2 The Essentials of Medical Dosimetry - This course covers the various quality assurance procedures performed in a radiation oncology department. Also included are various statistics topics to educate the student in becoming a good consumer of medical dosimetry research literature. Professional development, billing/coding, HIPAA, and professional service are also addressed. This course is twenty weeks in length. Prerequisite: A grade of “C” or better in RAD 510, RAD 515, RAD 520, and RAD 525.

COURSE OBJECTIVES:

1. Demonstrate an understanding of quality assurance procedures.
2. Demonstrate an understanding of statistics/research terms.
3. Demonstrate an understanding of professional development.
4. Demonstrate an understanding of billing/coding and HIPAA.
5. Demonstrate an understanding of professional service in the field of medical dosimetry.

COURSE OUTLINE:

Topics
1. Quality assurance
2. Statistical terminology
3. Professional development
4. Resumes
5. Billing/coding
6. HIPAA
7. Professional service

COURSE REQUIREMENTS:

Purchase all texts, attend all lectures, and complete required examinations, quizzes, and homework. Purchase a T130XA scientific calculator.

PREREQUISITES: A grade of “C” or better in RAD 510, RAD 515, RAD 520, and RAD 525.

TEXTBOOKS:

Required:

GRADING SCALE:

<table>
<thead>
<tr>
<th>Grade Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>A</td>
</tr>
<tr>
<td>80-89</td>
<td>B</td>
</tr>
<tr>
<td>70-79</td>
<td>C</td>
</tr>
<tr>
<td><70</td>
<td>Failing</td>
</tr>
</tbody>
</table>

Grades will be determined by:

Test Performance 70%
Quizzes/Homework/Presentations/Papers 30%

Note: An overall GPA of 3.0 or greater in all graduate coursework is required to successfully complete the Medical Dosimetry Program. This is a SIUC Graduate School Policy.
COURSE DEFINITION:
RAD 535-4 Medical Dosimetry Clinical II - This is the second of a three course sequence. During the three course sequence, students will complete eight clinical rotations including Brachytherapy, Simulation, Gamma Knife, Treatment Aids, IMRT, External Beam, Physics, Special Measurements and QA. The length of these rotations varies from one to eleven weeks. During this course students will perform two to four of these rotations depending on the rotation schedule. While in the clinical setting students will observe and work directly with a medical dosimetrist. Emphasis is given on learning and understanding the role and responsibilities of a medical dosimetrist in the clinical setting. This course is twenty weeks in length. Prerequisite: A grade of “C” or better in RAD 515.

COURSE OBJECTIVES:

1. Demonstrate an understanding of the basic clinical concepts of medical dosimetry.
2. Demonstrate an understanding of theory and principles of operation of treatment planning computers.
3. Demonstrate an understanding of the different types of radiation production.
4. Understand and calculate radiation attenuation and decay.
5. Demonstrate an understanding of the different types of radiation detectors.
6. Demonstrate a basic understanding of treatment planning.
7. Demonstrate an understanding of the role of a medical dosimetrist.

COURSE OUTLINE:

Topics
1. Clinical rotations
2. Perform clinical competencies
3. External beam calculations
4. Brachytherapy calculations
5. Physics procedures

COURSE REQUIREMENTS:

Purchase all texts. Participate in clinical internship and purchase a T130XA scientific calculator.

PREREQUISITES: A grade of “C” or better in RAD 515.

TEXTBOOKS:

Required:

Optional: (Students typically use clinical sites’ copy)

GRADING SCALE:

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>A</td>
</tr>
<tr>
<td>80-89</td>
<td>B</td>
</tr>
<tr>
<td>70-79</td>
<td>C</td>
</tr>
<tr>
<td><70</td>
<td>Failing</td>
</tr>
</tbody>
</table>

Grades will be determined by:

- Growth Evaluations: 50%
- Clinical Competencies & Reports: 40%
- Weekly Journal: 10%

Note: An overall GPA of 3.0 or greater in all graduate coursework is required to successfully complete the Medical Dosimetry Program. This is a SIUC Graduate School Policy.

If a student receives two or more Growth Evaluations that are an 80% or below during one semester; their continuation in the Medical Dosimetry Program is at the discretion of the Program Director and Clinical Instructor. It is expected that all students consistently show “normal progress” in the development of their dosimetry skills and always demonstrate a positive attitude. Not meeting the normal progress guidelines justifies removal from the program as well. A grade of an “F” will be given for the semester in which the student is removed from the program.

If a student is removed from a clinical site for behavioral reasons, they must leave immediately and will not be allowed to continue the Medical Dosimetry Program. A grade of an “F” will be given for the semester they are removed.

All students must meet the minimum number of clinical competencies and show normal progress per rotation to continue with the program as there is no time available to go back and retake a specific clinical rotation. All clinical competencies must be completed by the end of the summer semester to successfully complete the program. If has 7 total failed competencies (throughout entire program) or fails a particular competency 4 times, a student will be removed from the program. A grade of an “F” will be given for the semester in which the student does not fulfill the competency requirements.

If a student misses 4 days throughout the program their clinical grade will be lowered one letter grade. If a student misses six or more days during the year, the student can be removed from the program.
COURSE DEFINITION:
RAD 540-3 The Physics of Medical Dosimetry II – This course covers the following topics: imaging for radiation oncology, IMRT, stereotactic radiosurgery, special procedures, particle therapy, hyperthermia, and radiation safety. This course is twenty weeks in length. Prerequisite: A grade of “C” or better in RAD 520.

COURSE OBJECTIVES:

1. Demonstrate an understanding of imaging in radiation oncology.
2. Demonstrate an understanding of IMRT.
3. Demonstrate an understanding of stereotactic radiosurgery and gamma knife.
4. Demonstrate an understanding of particle therapy.
5. Demonstrate an understanding of hyperthermia.
6. Demonstrate an understanding of radiation safety.

COURSE OUTLINE:

Topics
1. Oncology imaging
2. IMRT techniques
3. Stereotactic radiosurgery and gamma knife
4. Particle therapy
5. Hyperthermia
6. Radiation safety

COURSE REQUIREMENTS:

Purchase all texts, attend all lectures, and complete required examinations, quizzes, and homeworks. Purchase a T130XA scientific calculator.

PREREQUISITES: A grade of “C” or better in RAD 520.

TEXTBOOKS:

Required:

Optional: (Students typically use clinical sites’ copy)
GRADING SCALE:
90-100 A
80-89 B
70-79 C
<70 Failing

Grades will be determined by:

Test Performance 65%
Quizzes/Homework 35%

Note: An overall GPA of 3.0 or greater in all graduate coursework is required to successfully complete the Medical Dosimetry Program. This is a SIUC Graduate School Policy.
COURSE DEFINITION:
RAD 545-3 Seminar in Medical Dosimetry II – This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. Prerequisite: This course is twenty weeks in length. Prerequisite: A grade of “C” or better in RAD 525.

COURSE OBJECTIVES:

1. Demonstrate an understanding of the basic clinical concepts in radiation oncology.
2. Demonstrate an understanding of how different cancers are treated.
3. Demonstrate an understanding of the latest technologies in radiation oncology.
4. Demonstrate a basic understanding of treatment planning.
5. Demonstrate an understanding of the role of a medical dosimetrist.

COURSE OUTLINE:

Topics

1. Clinical concepts in radiation oncology
2. Treatment methods
3. New technologies
4. Treatment planning

COURSE REQUIREMENTS:

Attend clinical conferences or perform journal article summaries.

PREREQUISITES: A grade of “C” or better in RAD 525.

TEXTBOOKS: NA

GRADING SCALE:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>A</td>
</tr>
<tr>
<td>80-89</td>
<td>B</td>
</tr>
<tr>
<td>70-79</td>
<td>C</td>
</tr>
<tr>
<td><70</td>
<td>Failing</td>
</tr>
</tbody>
</table>

Grades will be determined by:

- Timely Completion of Conference/Journal Article Summaries 70%
- Research Papers 30%

Note: An overall GPA of 3.0 or greater in all graduate coursework is required to successfully complete the Medical Dosimetry Program. This is a SIUC Graduate School Policy.
COURSE DEFINITION:
RAD 550-2 Medical Dosimetry Clinical III - This is the third course of a three course sequence. During the three course sequence, students will complete eight clinical rotations including Brachytherapy, Simulation, Gamma Knife, Treatment Aids, IMRT, External Beam, Physics, Special Measurements and QA. The length of these rotations varies from one to ten weeks. During this course students will perform one to two of these rotations depending on the rotation schedule. While in the clinical setting students will observe and work directly with a medical dosimetrist. Emphasis is given on learning and understanding the role and responsibilities of a medical dosimetrist in the clinical setting. This course is ten weeks in length. Prerequisite: A grade of “C” or better in RAD 535.

COURSE OBJECTIVES:
1. Demonstrate an understanding of the basic clinical concepts of medical dosimetry.
2. Demonstrate an understanding of theory and principles of operation of treatment planning computers.
3. Demonstrate an understanding of the different types of radiation production.
4. Understand and calculate radiation attenuation and decay.
5. Demonstrate an understanding of the different types of radiation detectors.
6. Demonstrate a basic understanding of treatment planning.
7. Demonstrate an understanding of the role of a medical dosimetrist.

COURSE OUTLINE:

Topics
1. Clinical rotations
2. Perform clinical competencies
3. External beam calculations
4. Brachytherapy calculations
5. Physics procedures

COURSE REQUIREMENTS:
Purchase all texts. Participate in clinical internship and purchase a T130XA scientific calculator.

PREREQUISITES: A grade of “C” or better in RAD 535.

TEXTBOOKS:

Required:

Optional: (Students typically use clinical sites’ copy)
GRADING SCALE:

- 90-100 A
- 80-89 B
- 70-79 C
- <70 Failing

Grades will be determined by:

- Growth Evaluations 50%
- Clinical Competencies & Reports 40%
- Weekly Journal 10%

Note: An overall GPA of 3.0 or greater in all graduate coursework is required to successfully complete the Medical Dosimetry Program. This is a SIUC Graduate School Policy.

If a student receives two or more Growth Evaluations that are an 80% or below during one semester; their continuation in the Medical Dosimetry Program is at the discretion of the Program Director and Clinical Instructor. It is expected that all students consistently show “normal progress” in the development of their dosimetry skills and always demonstrate a positive attitude. Not meeting the normal progress guidelines justifies removal from the program as well. A grade of an “F” will be given for the semester in which the student is removed from the program.

If a student is removed from a clinical site for behavioral reasons, they must leave immediately and will not be allowed to continue the Medical Dosimetry Program. A grade of an “F” will be given for the semester they are removed.

All students must meet the minimum number of clinical competencies and show normal progress per rotation to continue with the program as there is no time available to go back and retake a specific clinical rotation. All clinical competencies must be completed by the end of the summer semester to successfully complete the program. If has 7 total failed competencies (throughout entire program) or fails a particular competency 4 times, a student will be removed from the program. A grade of an “F” will be given for the semester in which the student does not fulfill the competency requirements.

If a student misses 4 days throughout the program their clinical grade will be lowered one letter grade. If a student misses six or more days during the year, the student can be removed from the program.
COURSE DEFINITION:
RAD 555-2 The Physics of Medical Dosimetry III – This course covers the following topics: Monitor Unit (MU) calculations, point dose calculations and radiation biology. This course is ten weeks in length. Prerequisite: A grade of “C” or better in RAD 540.

COURSE OBJECTIVES:

1. Demonstrate an understanding of monitor unit calculations.
2. Demonstrate an understanding of point dose calculations.
3. Demonstrate an understanding of radiation biology.

COURSE OUTLINE:

Topics
1. Monitor unit calculations
2. Point dose calculations
3. Radiation Biology

COURSE REQUIREMENTS:

Purchase all texts, attend all lectures, and complete required examinations, quizzes, and homeworks. Purchase a T130XA scientific calculator.

PREREQUISITES: A grade of “C” or better in RAD 540.

TEXTBOOKS:

Required:

Optional: (Students typically use clinical sites’ copy)

GRADING SCALE:

90-100 A
80-89 B
70-79 C
<70 Failing
Grades will be determined by:

- Test Performance: 70%
- Quizzes/Homework: 30%

Note: An overall GPA of 3.0 or greater in all graduate coursework is required to successfully complete the Medical Dosimetry Program. This is a SIUC Graduate School Policy.

Note: A Final Comprehensive Exam will be given during this course and one must receive a passing grade (≥80%) to pass the course. If a score is less than an 80%, a grade of an F will be given. (This exam is comprehensive for the entire program year)
COURSE DEFINITION:
RAD 560-2 Seminar in Medical Dosimetry III – This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is ten weeks in length. Prerequisite: A grade of “C” or better in RAD 545.

COURSE OBJECTIVES:
1. Demonstrate an understanding of the basic clinical concepts in radiation oncology.
2. Demonstrate an understanding of how different cancers are treated.
3. Demonstrate an understanding of the latest technologies in radiation oncology.
4. Demonstrate a basic understanding of treatment planning.
5. Demonstrate an understanding of the role of a medical dosimetrist.

COURSE OUTLINE:
Topics
1. Clinical concepts in radiation oncology
2. Treatment methods
3. New technologies
4. Treatment planning

COURSE REQUIREMENTS:
Attend clinical conferences or perform journal article summaries.

PREREQUISITES: A grade of “C” or better in RAD 545.

TEXTBOOKS: NA

GRADING SCALE:

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Grade</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>A</td>
<td>Grades will be determined by:</td>
</tr>
<tr>
<td>80-89</td>
<td>B</td>
<td>Timely Completion of</td>
</tr>
<tr>
<td>70-79</td>
<td>C</td>
<td>Conference/Journal Article Summaries 100%</td>
</tr>
<tr>
<td><70</td>
<td>Failing</td>
<td></td>
</tr>
</tbody>
</table>

Note: An overall GPA of 3.0 or greater in all graduate coursework is required to successfully complete the Medical Dosimetry Program. This is a SIUC Graduate School Policy.
DAYS: Mondays and Wednesdays
TIME: 12:00 -1:30; 45 hours of lecture Fall semester, 45 hours of lecture Spring semester

Section 1: Radiologic Physics

<table>
<thead>
<tr>
<th>Lecture #</th>
<th>Date</th>
<th>Topic</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>08/15/16</td>
<td>Atomic and Nuclear Structure</td>
<td>F. Reynoso</td>
</tr>
<tr>
<td></td>
<td>08/17/16</td>
<td>A. Atomic Structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Rest Mass</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Fundamental Particles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Atomic Structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Atomic Binding Energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Atomic Shell Filling Rules</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Transitions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Energy Level Diagrams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Characteristic Radiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Auger Electrons</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Fluorescent Yield</td>
<td></td>
</tr>
<tr>
<td>A. Nuclear Structure</td>
<td></td>
<td>1. Mass, Atomic, and Neutron Number</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Periodic Table of the Elements</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Nuclear Binding Energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Fission, Fusion</td>
<td></td>
</tr>
<tr>
<td>B. Radioactive Decay</td>
<td></td>
<td>1. Modes of Decay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Special Types of Nuclides</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Mathematics of Radioactive Decay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Equilibrium</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Natural Radioactivity</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>08/22/16</td>
<td>Production of X-Rays</td>
<td>J. Cammin</td>
</tr>
<tr>
<td>A. X-Ray Tubes</td>
<td></td>
<td>1. Anode and Cathode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Focal Spot Size</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Reflection and Transmission Targets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Heel Effect</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. X-ray Emission Spectrum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Factors That Affect the X-ray Emission Spectrum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. X-ray Circuits</td>
<td></td>
</tr>
<tr>
<td>B. Physics of X-Ray Production</td>
<td></td>
<td>1. Bremsstrahlung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Characteristic X-Rays</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. X-Ray Energy Spectra</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Operating Characteristics</td>
<td></td>
</tr>
<tr>
<td>C. Simulators</td>
<td></td>
<td>1. Conventional Simulators</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. CT-Simulators</td>
<td></td>
</tr>
<tr>
<td>4, 5</td>
<td>08/24/16</td>
<td>Radiation Treatment & Simulation Machines</td>
<td>J. Cammin (8/24)</td>
</tr>
<tr>
<td></td>
<td>08/29/16</td>
<td>A. Kilovoltage Units</td>
<td>M. Altman (8/29)</td>
</tr>
<tr>
<td>B. Linear Accelerators</td>
<td></td>
<td>1. Major Subsections</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Accelerator Section</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Microwave Power (Magnetrons, Klystrons)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Bending Magnet Types</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Monitor Chamber</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Photon Beam Production</td>
<td></td>
</tr>
</tbody>
</table>
(a) Target
(b) Flattening Filter
(c) Collimation (including Multileaf Collimators)
(d) Beam Profiles ("Horns")
7. Computer Control System
8. Electron Beam Production
 (a) Scattering Foil Systems
 (b) Scanning Electromagnet Systems
 (c) Collimation
C. New Machines
 1. ViewRay
 2. Vero

6 08/31/16 Interactions of Ionizing Radiation M. Altman
A. Types of Electromagnetic Radiation
B. Properties of Photons, Relationship of Energy & Wavelength
 1. Direct and Indirect Ionizing Particles
C. Photon Interaction Process, Kerma
 1. Attenuation and Absorption Coefficients
 a) Attenuation Coefficients
 b) Transfer Coefficients
 c) Absorption Coefficients
D. Relationship of Kerma and Absorbed Dose
E. Attenuation in the Body
F. Modes of Interaction
 1. Coherent Scattering
 2. Photoelectric Absorption
 3. Compton Scattering
 4. Pair Production
 5. Triplet Production
 6. Photodisintegration
 7. Energy Dependence of Interaction Probabilities
 8. Attenuation in the Human Body
G. Interaction of Particle Radiation
 1. Heavy Charged Particles
 2. Interactions of Electrons
 3. Interactions of Neutrons

7, 8 09/07/16 Radiation Measurements M. Altman
09/12/16
A. Photon and Energy Flux Density and Fluence
B. The Roentgen
C. Electronic Equilibrium
D. Ionization Chambers
 1. Free-air Chambers
 2. Thimble Chambers
 3. Condenser Chambers
 a) Stem Effect
 4. Farmer Chambers
 5. Parallel-Plate Chambers
 6. Extrapolation Chambers
 7. Diode Detectors
 8. Electrometers
 a) Integrate Mode
 b) Rate Mode
E. Exposure Calibration of X-Ray or Gamma-Ray Beams
 1. Selection of Calibration Variables
 2. Selection of Chamber
 3. Positioning of Chamber
 4. Corrections to Readings
Calibration of Dose Output

A. Units of Radiation Dose, Dose Equivalent and RBE-Dose
B. Calculation of Dose from Exposure
 1. Converting Exposure to Absorbed Dose in Air
 2. f-factor
 3. Dose in Free Space
C. Measurement of Absorbed Dose with an Ionization Chamber
 1. Stopping Powers
 a) Unrestricted Stopping Power
 b) Collisional Stopping Power (Sc)
 c) Radiative Stopping Power (Sr)
 d) Restricted Stopping Power
 2. Bragg-Gray Cavity Theory
 3. Spencer-Attix Cavity Theory
D. AAPM Calibration Protocols
 1. TG-51 Protocol (Photons and Electrons)
 2. TG-61 Protocol (Superficial x-rays)

Other Measurement Systems

A. Film
 1. Radiographic
 2. Radiochromic
B. TLD
 1. Phosphorescence
 2. Thermoluminescence
C. Scintillation
D. Calorimetry
E. Gel/Chemical Dosimetry
F. Diode Detectors

Radiologic Physics Exam

External Beam Clinical Physics

A. Dosimetric Variables
 1. Inverse Square Law
 2. Backscatter factor
 3. Peak Scatter Factor
 4. Electron Buildup
 5. Percent Depth Dose
 a) Mayneord F-factor
 b) TAR Correction to F-factor
 6. Equivalent Squares
 7. Tissue-air Ratio
 8. Scatter-air Ratio
 9. Tissue-phantom Ratio
 10. Tissue-maximum Ratio

System of Dose Calculations

A. Monitor Unit Calculations
 1. Output Factor
 2. Field Size Correction Factors
 3. Collimator Scatter Factor and Phantom Scatter Factor
 4. Beam Modifier Factors
 5. Patient Attenuation Factors
B. Calculations in Practice
 1. SSD Technique
 a) SSD Treatment same as SSD of Calibration
b) SSD Treatment Different from SSD of Calibration

c) SSD Treatment and SAD Calibration

2. SAD Technique

a) SAD Treatment and SAD Calibration

b) SAD Treatment and SSD Calibration

c) SAD Rotational Treatment

C. Beam Weighting

D. Arc rotation therapy

E. Irregular Fields

17, 18 10/24/16 Computerized Treatment Planning O. Green

10/26/16

A. Isodose curves (beam characteristics)

B. Skin Dose

C. Parallel Opposed Beam Combination

D. Wedge Isodose Curves

1. Wedge Angle and Hinge Angle

2. Wedge Factor

E. Wedge Techniques

1. Wedge Pair

2. Open and Wedged Field Combination

3. Skin Compensation

F. Beam Combination (3-,4-,6- field techniques)

G. Dose-Volume Specification

ICRU 50

1. GTV, CTV, PTV

2. Organs at Risk

3. Dose Specification

ICRU 62

1. ITV

2. Planning Risk Volume

3. Conformity Index

19, 20 10/31/16 Dose Calculation Algorithms O. Green

11/02/16

A. Basic Dose Algorithms

Generation of Isodoses

Irregular Fields

B. Corrections for Inhomogeneities

a) Simple 1-D and 2-D Methods

b) Convolutions Methods

c) Monte Carlo Methods

d) Dose Perturbations at Interfaces

21, 22 11/07/16 Electron Beam M. Goddu

11/09/16

A. Depth-dose/Isodose characteristics

1. AAPM TG-25

B. Treatment Planning with Electrons

1. Rules of Thumb

2. Selection of energy, field size

3. Electron Skin Dose

4. Electron Bolus

5. Electron Field Shaping

C. Field Matching

1. Electron-electron Gapping

2. Electron-photon Gapping

D. Electron Backscatter

E. Inhomogeneities and Electrons

23, 24 11/14/16 3D CRT Including ICRU Concepts M. Goddu

11/16/16 and Beam Related Biology
A. 3DCRT concepts volumetric (3DCRT) vs. non-volumetric
 1. Technology and methods for planning (volume-based planning)
 2. Building patient models (image reconstruction and segmentation)
 3. Virtual simulation
 4. Implications of treatment variabilities
 Systematic and random setup variability, patient breathing
 Contouring variability
B. Volumetric Beam Placement
 1. DRR Generation
 2. BEV, DVH
 3. Non-coplanar beams
 4. Planning Tools
 Biological implications of uniform vs. non-uniform dose delivery
 Non-biological and biological dose-volume metrics (DVHs, TCPs,
 NTCPs)
 Margins (PTVs, PRVs)
C. Treatment Planning Methods
 Beam Selection
 4D Imaging and Planning
 Dose Reporting
 Volumetric vs. Point Prescriptions

25 11/21/16
Assessment of Patient Setup and Verification
M. Goddu
A. Positioning and immobilization methods and devices
 Table coordinates, lasers, distance indicators
 Positioning options (calibrated frames, optical and video guidance, etc.)
 Breathing maintenance
 Immobilization methods (thermoplastic masks, bite blocks, etc.)
B. Treatment Verification
 1. Image Based
 Radiographic
 Cone-beam CT
 MVCT
 Internal markers (e.g., implanted fiducials)
 2. Non-image based
 Ultrasound
 Video imaging
 Electromagnetic sources
 On-line correction of setup errors
 3. Adaptive planning concepts

26 11/28/16
Treatment Planning Evaluation and QA
M. Goddu
A. Plan Quality
 1. ICRU Definitions (Max Dose)
 2. PTU Coverage
 3. OAR Evaluation
B. Deliverability
 1. Complexity
 2. Uncertainties
 3. Volatility
C. TP – Quality Assurance
 1. TG-53
 2. Review of Images & Targets
 3. Review of Beam Data
 4. VanDyk Recommendations
 5. Data Transfer
 6. TP Disasters

27 11/30/16
Adjoining Fields & Special Dosimetry Problems
M. Goddu
A. Two-Field Problem
B. Three-Field Problem
C. Craniospinal Gapping
D. Peripheral Dose
E. Pacemaker
F. Gonadal Dose
G. Pregnant Patient
H. Surface Dose

28, 29 12/05/16 **External Beam Quality Assurance** M. Goddu
12/07/16 A. Overview of Quality Assurance in Radiation Therapy
Goals
Staffing
Roles, training, duties & responsibilities of individuals
Equipment Selection and Specifications
B. Linac and Imaging QA
Acceptance Testing – Linac
Commissioning – Linac
Data Required
Computer Commissioning
Routine Quality Assurance and Test Tolerance
Daily QA
Monthly QA
Yearly QA
C. Quality Assurance of Imaging Apparatus
Portal imagers
Linac mounted real-time fluoroscopy units
KVCT (cone beam) quality assurance testing
MVCT quality assurance (TomoTherapy)
D. Dosimetric Patient QA
1. Dosimetry based
 Diodes
 TLDs
 MOFSET

30 12/12/16 **Second Exam- Fall** O. Green

Brachytherapy Physics
1, 2 01/09/17 **Brachytherapy Principles** J. Garcia-Ramirez
01/11/17
A. Handling of Sealed Radioactive Sources
B. Dose Distributions for Sealed Implant Source
C. Radium and Radium Substitutes
 1. Radium Source Specification
 2. Radium Source Types
 3. Exposure Rate Constant
 4. Exposure Rate Calculations
 5. Disadvantages of Radium
 6. Replacement Sources for Radium
D. Sealed Source Production and Decay Mechanisms
E. Other Sealed Sources in Therapy
F. Unsealed Source Production and Decay Mechanisms
G. Converting Between mgRaEq and mCi
H. Remote Afterloading Units
 1. Low Dose Rate (LDR)
 2. High Dose Rate (HDR)
 3. Calibration

3, 4 01/18/17 **Brachytherapy Dosimetry** J. Garcia-Ramirez
01/23/17
A. Point Source Calculations
B. Linear Source Calculations
 1. Sievert Integral
2. Approximations
3. Along and away tables
C. TG-43 Formalism

5, 6 01/25/17
01/30/17

HDR Procedures

A. Afterloader principles
B. Source and transfer system design
C. Treatment sites
D. Treatment planning
E. Quality assurance

7 02/01/17

Brachytherapy Intracavitary

A. Linear Source Implant Calculations
 1. Along and Away Tables
B. Intracavitary Applications
 1. Cylinders
 a) Surface Dose and Cylinder Size
 2. Tandem and Ovoid
 a) Classical Intracavitary Dosage Systems
 (1) Prescription Points
 (2) Dosage Systems
C. ICRU Report 38 Dose Reporting
 1. Source Information
 2. Applicator Information
 3. Source Strength
 4. Reference Volume
 5. Reference Point Doses
 6. Time-Dose Patterns

8 02/06/17

Interstitial Implants

A. Paterson-Parker System
 1. Planar Implant
 2. Volume Implant
B. Quimby System
 1. Planar Implant
 2. Volume Implant
C. Paris System

9, 10 02/08/17
02/13/17

Prostate Breast, Eye Brachytherapy Implants

A. I-125, Pd-103 for Prostate
B. HDR for Prostate
C. HDR for Breast
D. Eye Applicators, Plaques
 COMS protocol
 Sr-90 applicators

11 02/15/17

Radiopharmaceutical

A. Methods of production and Clinical treatments
 - Reactor-produced isotopes
 - Cyclotron-based production
 - Isotope decay characteristics
 - Radiochemistry basics
 Clinical treatments using internally administered radioisotopes
 - Iodine treatment for thyroid
 - Radioimmunotherapy
 - Microspheres
 - Emerging treatments
B. Internal dosimetry and Safety
 - Dosimetry systems
 - Compartmental models
MIRD method
Dose estimates for embryo/fetus and breast-feeding infant
- Radiation safety
 - Equipment
 Survey meters, NaI probes, well counters, radionuclide calibrators
 Instrument quality controls and checks
 - Safety procedures
 Radiation protection
 Internal protection
 Decontamination
 Written directive/medical event
 Package receipt
 Area surveys
- Regulations

12 02/20/17 Brachytherapy Physics Exam J. Garcia-Ramirez

Imaging, IMRT, Special Procedures, Radiation Safety

13 02/22/17 Imaging for Radiation Oncology: MRI J. Kavanaugh
 Physical principles
 T1, T2, TE, TR imaging characteristics
 Advantages & limitations of MRI images for diagnosis and computerized treatment planning

 A. Ultrasound
 Physical principles
 Utility in diagnosis and patient positioning
 PET Imaging
 B. PET Physical principles
 Utility for Radiation Therapy
 SPECT
 C. Electronic Portal Imaging
 Overview of electronic portal imaging devices
 Types of portal imaging devices
 Clinical applications of EPID technology in daily practice

16 03/06/17 Imaging: Radiographic, CT, 4D J. Kavanaugh
 A. Diagnostic Imaging
 Physical principles
 Port Film Imaging
 Film based
 XV-2 film, EDR-2 film characteristics
 B. CT
 Physical principles: Serial, Helical
 Hounsfield Units, CT numbers, inhomogeneity corrections based on CT scan images

17 03/08/17 Imaging: Fusion, Image Registration J. Kavanaugh
 A. Image Fusion
 Advantages
 Challenges
 Techniques
 Limitations
 B. Deformable body/structure image fusion
 C. Quality assurance
 Image transfer process, accuracy, fidelity
 Image fusion process
IMRT – Part of Double Lecture
O. Green

A. IMRT Delivery Systems
1. Segmental MLC (SMLC) and Dynamic MLC (DMLC)
2. Serial Tomotherapy (MIMiC)
3. Helical Tomotherapy
4. Robotic Linac

B. Simulation, Dose prescription & inverse planning
1. Organ motion and IMRT (prostate, parotid, lung, patient weight loss during treatment, etc.)
2. Treatment calculations
3. “Forward planned” IMRT
4. Compare/contrast various treatment planning software available
5. How to distinguish a good IMRT plan versus a poor IMRT plan

C. IMRT Quality assurance
1. Systematic QA
2. Patient specific QA
3. Record/verify

D. ViewRay
1. Basic magnetic field and MRI concept review
2. Overview of MRI-guided delivery systems
3. Treatment planning
4. Quality assurance for an MRI-guided delivery system
5. ViewRay-specific operations issues (NRC overview, MRI safety, etc)

Special Procedures
M. Goddu

A. TBI
1. Patient Set-up
2. Dosimetry
3. Selection of energy, field size, distance
4. MU calculations

B. ESRT

C. TSET

D. Electron Arc

IMRT – Double Lecture
O. Green

A. IMRT Delivery Systems
1. Segmental MLC (SMLC) and Dynamic MLC (DMLC)
2. Serial Tomotherapy (MIMiC)
3. Helical Tomotherapy
4. Robotic Linac

B. Simulation, Dose prescription & inverse planning
1. Organ motion and IMRT (prostate, parotid, lung, patient weight loss during treatment, etc.)
2. Treatment calculations
3. “Forward planned” IMRT
4. Compare/contrast various treatment planning software available
5. How to distinguish a good IMRT plan versus a poor IMRT plan

C. IMRT Quality assurance
1. Systematic QA
2. Patient specific QA
3. Record/verify

D. ViewRay
1. Basic magnetic field and MRI concept review
2. Overview of MRI-guided delivery systems
3. Treatment planning
4. Quality assurance for an MRI-guided delivery system
5. ViewRay-specific operations issues (NRC overview, MRI safety, etc)
Radiation Safety

A. Concepts and Units
 1. Radiation Protection Standards
 2. Quality Factors
 3. Definitions for Radiation Protection
 4. Dose Equivalent
 a) Units of Dose Equivalent
 5. Effective Dose Equivalent

B. Types of Radiation Exposure
 1. Natural Background Radiation
 2. Man-Made Radiation
 3. NCRP #91 Recommendations on Exposure Limits

C. Protection Regulations
 1. NRC Definitions
 a) Recordable Event
 b) Misadministration
 2. NRC Administrative Requirements
 a) Radiation Safety Program
 b) Radiation Safety Officer
 c) Radiation Safety Committee
 d) Quality Management Program
 3. NRC Regulatory Requirements

Radiation Shielding

A. Treatment Room Design
 1. Controlled/Uncontrolled Areas
 2. Types of Barriers
 3. Factors in Shielding Calculations
 a) Workload (W)
 b) Use factor (U)
 c) Occupancy factor (T)
 d) Distance

B. Shielding Calculations
 1. Primary Radiation Barrier
 2. Scatter Radiation Barrier
 3. Leakage Radiation Barrier

C. Sealed Source Storage

D. Protection Equipment and Surveys
 1. Operating Principles of Gas-filled Detectors
 2. Operating Characteristics
 3. Radiation Monitoring Equipment
 a) Ionization chamber (Cutie Pie)
 b) Geiger-Mueller Counters
 c) Neutron Detectors
 4. Personnel Monitoring

Informatics

A. DICOM
B. PACS
C. Network Integration and Integrity
D. Storage and Archival
E. IS Maintenance

Particle Therapy

A. Protons
 - Proton Beam Energy Deposition
 - Equipment for Proton Beam Therapy
 - Clinical Beam Dosimetry
 - Clinical Proton Beam Therapy
- Treatment Planning
- Treatment Delivery
- Clinical Applications
- Clinical Beam Dosimetry

B. Other Particles
- Carbon
- Neutrons

C. Biology
- LET
- RBE

28, 29 04/24/17 Stereotactic Radiosurgery J. Kavanaugh
04/26/17

A. SRS Delivery Systems
 1. Linac based
 2. Gamma Knife
 3. Robotic Linac

B. Simulation and immobilization/repositioning
C. Dose prescription & treatment planning
D. Treatment calculations
E. SRS quality assurance

30 05/01/17 Second Exam-Spring M. Goddu
Clinical Rotation
Students will learn clinical practices through direct clinical experiences, reviewing related journal articles, attending related conferences, and keeping a journal of experiences and questions. Student, clinical instructors, program advisory board, program director, and clinical preceptor will provide ongoing assessment throughout the program.

Students must achieve “normal progress” for every rotation to continue enrollment in the program.

Goals of each rotation

Brachytherapy
Student will be capable of preparation, treatment, and follow-up of the brachytherapy patient. Student will act in the role of the brachytherapy technologist, medical dosimetrist, and medical physicist as related to brachytherapy cases.

Conventional Simulation (If available) and CT Simulation
Student will perform early planning for patient’s treatment by constructing immobilization devices, obtaining measurements, directing isocenter, setting treatment field boundaries, producing radiographs, and acquiring CT study set.

Treatment Aids
Student will produce treatment aids for patient’s treatment by constructing field-shaping blocks, manipulating multileaf collimated fields (MLC), constructing compensating filters and/or bolus devices.

Dose Calculations/Chart Review
Student will perform dose calculations and review therapy charts for consistency among dose prescription, isodose, calculation sheet, and daily treatment record.

External Beam Treatment Planning
Student will evaluate patient’s case, consider physician’s prescription, delineate normal structures from CT images, utilize virtual simulation software, optimize a plan for treatment, discuss plan with Dosimetrist, Physician, Physicist, and Radiation Therapist, document patient’s set-up and plan, use patient measurements and set-up parameters to calculate fields for treatment, enter set-up and dose into the treatment verification computer system.

Gamma Knife/Stereotactic Radiosurgery
Student will observe/perform quality assurance procedures for stereotactic treatments, work with the Medical Physicist, Radiation Oncologist and Neurosurgeon in generating a treatment plan, and observe the planning and treatment of gamma knife patients.

IMRT
Using IMRT capable planning systems, the student will plan a variety of IMRT cases, including organ delineation, verifying reference point, reviewing target volume definition and dose prescription with radiation oncologist, verifying plan with medical physicist, performing treatment machine QA with physicist, and documenting plan for treatment. Student will assist Radiation Therapists in the treatment of a few patients.

Plan and QA all for all treatment units, Varian/Elekta/Tomotherapy
The student will participate in treatment planning and QA for all treatment and simulator machines that are available.
Quality Assurance
Student will perform and document daily, weekly, monthly and annual quality assurance procedures on linear accelerators to include mechanical checks, output checks, calibration measurements, laser checks. Student will perform and document quality assurance procedures on gamma knife, simulators, CT scanner.

Assessment

Objectives
Student uses objectives as a guide during his/her clinical practicum.

Competencies
Student will complete practicum-related competencies as described by the objectives, throughout his/her clinical rotation. Students should inform his/her clinical instructor when they are ready to complete a specific competency.

Written Journal
The student will write experiences, thoughts, and questions related to his/her current clinical practicum. The student will also include a statement on how the rotation is going and also what competencies were accomplished for the week. This document should be posted to Desire2Learn every Friday evening by 11:59 pm. No late journal assignments will be accepted after the availability window closes. The program director will review the journal weekly and comment back.

Journal Article Reviews or Conference Reports.
Students will write a summary of a journal article/conference. Making sure they can apply the information to the clinical setting. Discussion includes comments from the student regarding the learning that occurred, then comments and questions from the program faculty as to how analysis could be changed or improved so further learning takes place. Some readings will be assigned and other can be related to the students research interests.

Projects/Case Studies
Throughout clinical practicum, student will be involved in projects that supplement clinical rotation

Meetings among students, clinical instructors, program director
Student will meet with clinical instructors to go over growth evaluations and at any other time during specific rotations to assess learning and progress. Students can meet with the program director at any time to assess progress and learning.

Meetings with student and advisory board
A Dosimetry Program Advisory Board meeting will be conducted annually and students will be invited to attend.

Final Written Exam
A final written exam will be given at the conclusion of the program during RAD 555. The student must receive an 80% or better on this exam to be eligible for graduation from the program. If the 80% or better grade is not earned, a grade of F will be given.
Clinical Rotations will consist of the following:

St. Louis Students

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachytherapy</td>
<td>6 weeks</td>
</tr>
<tr>
<td>Simulation</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Gamma Knife/Stereo/Treatment Aids</td>
<td>1 week- float</td>
</tr>
</tbody>
</table>
| External Beam Planning (BJH) | 8 - 12 weeks *
| External Beam Planning (StP) | 8 - 12 weeks *Note not all students will attend every external |
| External Beam Planning (CTC) | 8 - 12 weeks |
| External Beam Planning (St. Luke’s) | 8 - 12 weeks |
| Dose Calcs/Chart Review | 2 weeks |
| IMRT | 10 weeks but can also be performed while in other external beam rotations |
| Special Measurements | throughout year |
| Tx Machine QA | throughout year |

Distance Learning Students - this is suggested total time performing the following duties

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachytherapy</td>
<td>6 weeks</td>
</tr>
<tr>
<td>Simulation</td>
<td>3 weeks</td>
</tr>
<tr>
<td>Gamma Knife/Stereo/Treatment Aids</td>
<td>1 week- float</td>
</tr>
<tr>
<td>External Beam Planning</td>
<td>28 weeks</td>
</tr>
<tr>
<td>Dose Calcs/Chart Review</td>
<td>2 weeks</td>
</tr>
<tr>
<td>IMRT</td>
<td>10 weeks but can also be performed while in other external beam rotations</td>
</tr>
<tr>
<td>Special Measurements</td>
<td>throughout year</td>
</tr>
<tr>
<td>Tx Machine QA</td>
<td>throughout year</td>
</tr>
</tbody>
</table>

- Please refer to the rotation schedule for your rotation cycle.

- During clinical rotations in which workload is low and respective assignments are complete, student should go to clinical site of prior or next clinical rotation.

- A student growth evaluation must be filled for each clinical rotation. Every four weeks of a given rotation an evaluation must be completed. If the rotation is less than four weeks in length then an evaluation must be done at the conclusion of the rotation. The evaluation is on the next page. i.e. brachytherapy will have two growth evaluations, IMRT two, external beam planning at outside sites will need three.
SIUC MEDICAL DOSIMETRY PROGRAM
PERSONAL/PROFESSIONAL GROWTH ASSESSMENT

Student: ____________________________

Rotation: ___________________________

Please assess each statement by placing the number which best describes the student’s professional and clinical performance in the space provided.

- 1, 2, or 3 = Levels of Unacceptable
- 4 = Acceptable but improvements can be made
- 5 = Excellent (consistently performs above level of expectation)

<table>
<thead>
<tr>
<th>1. Demonstrates good rapport/communication skills with:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Patient</td>
<td></td>
</tr>
<tr>
<td>b. Clinical Supervisor</td>
<td></td>
</tr>
<tr>
<td>c. Department Personnel</td>
<td></td>
</tr>
<tr>
<td>d. Radiation Oncologist(s) / Physicist</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Demonstrates a positive professional attitude and appearance.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3. Demonstrates good attendance and punctuality- reports to assigned area on time and finalizes all work responsibilities before leaving.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4. Demonstrates ability to accept and utilize constructive criticism.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5. Demonstrates cultural competency & respect in all professional interactions.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6. Demonstrates responsible work ethic. i.e. shows initiative to assist in or perform all clinical duties, exhibits a desire to learn, uses clinical time effectively, seeks out new or additional tasks, willing to help out where needed.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. Maintains a focused approach throughout clinical rotation and does not get distracted.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. Demonstrates continual improvement of skills for the rotation being evaluated. i.e. contouring accuracy, planning, making fewer mistakes, etc.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. Demonstrates the ability to interpret the patient chart and retrieve needed information.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. Exercises good judgment in determining treatment technique/approach for desired patient outcome per the physician’s prescription. i.e. palliative or curative intent.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11. Demonstrates competency for the rotation being evaluated. i.e. sim, external beam, brachytherapy, etc.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Demonstrates an understanding of the concepts needed for the rotation being evaluated.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. Demonstrates the ability to complete proper documentation for the area being evaluated. i.e. R&V, billing, etc.</th>
<th></th>
</tr>
</thead>
</table>

Total Points: /65

Evaluator’s Comments:

Clinical Instructor’s Signature

Date

Intern’s Comments:

Intern’s Signature

Date
CLINICAL TIME SHEET

NAME: ___ CLINICAL ROTATION ___

*Time sheet is to be kept current at all times and turned in at end of semester. Keep a separate sheet for each clinical rotation.

*Indicate: Number of hours present when present Number of hours absent when absent H = Holiday V = Vacation Day I = Interview Day S = Snow Day

*Ten Vacation Days are specified during your program year. If you are absent for any reason other than vacation or holiday, the time must be made up during the vacation days. You are allotted two interview days during the spring/summer semester only with interview documentation (these are not free days to take when one wants). One personal day is allowed during program.

*Failure to comply with the hours assigned by your clinical site will affect your clinical internship grade.

| MONTH | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | Hours Present | Hours Absent | Hours Made Up | Total Days |
|-------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----------------|-----------------|-----------------|-------------|
| January | | | | | | | | | | | | | | | | | | | | | | | | | | | | ___________________ | (Clinical Instructor's Signature) | (Date) | (Student's Signature) | (Date) |
| February | | | | | | | | | | | | | | | | | | | | | | | | | | | | ___________________ | (Clinical Instructor's Signature) | (Date) | (Student's Signature) | (Date) |
| March | | | | | | | | | | | | | | | | | | | | | | | | | | | | ___________________ | (Clinical Instructor's Signature) | (Date) | (Student's Signature) | (Date) |
| April | | | | | | | | | | | | | | | | | | | | | | | | | | | | ___________________ | (Clinical Instructor's Signature) | (Date) | (Student's Signature) | (Date) |
| May | | | | | | | | | | | | | | | | | | | | | | | | | | | | ___________________ | (Clinical Instructor's Signature) | (Date) | (Student's Signature) | (Date) |
| June | | | | | | | | | | | | | | | | | | | | | | | | | | | | ___________________ | (Clinical Instructor's Signature) | (Date) | (Student's Signature) | (Date) |
| July | | | | | | | | | | | | | | | | | | | | | | | | | | | | ___________________ | (Clinical Instructor's Signature) | (Date) | (Student's Signature) | (Date) |
| August | | | | | | | | | | | | | | | | | | | | | | | | | | | | ___________________ | (Clinical Instructor's Signature) | (Date) | (Student's Signature) | (Date) |
| Septembe r | | | | | | | | | | | | | | | | | | | | | | | | | | | | ___________________ | (Clinical Instructor's Signature) | (Date) | (Student's Signature) | (Date) |
| October | | | | | | | | | | | | | | | | | | | | | | | | | | | | ___________________ | (Clinical Instructor's Signature) | (Date) | (Student's Signature) | (Date) |
| November | | | | | | | | | | | | | | | | | | | | | | | | | | | | ___________________ | (Clinical Instructor's Signature) | (Date) | (Student's Signature) | (Date) |
| December | | | | | | | | | | | | | | | | | | | | | | | | | | | | ___________________ | (Clinical Instructor's Signature) | (Date) | (Student's Signature) | (Date) |

*To be turned in at end of each rotation

**Students at distant clinic sites keep a master time sheet for the entire year

***If keeping a master time sheet, please indicate when various rotations were completed.
Medical Dosimetry Educational Program
Quality Assurance Guidelines
Treatment Machine and Simulator

Student participates in treatment machine quality assurance throughout the Dosimetry Program. Each month the student should participate in a QA procedure.

- For the following QA assignments, student submits a report to D2L following review and signature of assigned dosimetrist, physicist or therapist. Most of these QA assignments should be completed during their respective rotation. The report should include the test being performed, recommended frequency, how the test is performed, and what to do if the test is out of tolerance.

<table>
<thead>
<tr>
<th>QA</th>
<th>Date Participated</th>
<th>Date Report Turned In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachytherapy Source Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachytherapy Machine/Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachytherapy Applicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional Simulator- monthly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(most likely will be through review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with physics staff)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT Simulator- daily or perform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>warm-up procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varian Dual Energy Linear Accelerator-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>monthly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elekta Linear Accelerator- monthly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(or 2nd linac in dept)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMRT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamma Knife/Stereotactic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomotherapy QA- if available. If not,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>must outline/summarize TG 148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily Constancy Check to include</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Constancy Check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGRT QA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser/ODI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- During his/her external beam treatment planning rotation, the student will:
 - Observe and participate with all dosimetrists and physicists in monthly QA of all treatment machines.
 - Perform successfully, on own, with supervision of dosimetrist and physicist, one treatment machine QA for the following treatment machines:
 - Varian dual energy linear accelerator
 - Elekta linear accelerator or a 2nd linear accelerator QA in department
 - Superficial machine- if available
 - Daily constancy check to include electron constancy check
 - Write a report for QA completed on own and have clinical instructor verify and sign report. The report must include the test performed, tolerance, and the recommend frequency of completing the test. The report must be posted to Desire2Learn.
 - To achieve normal progress in QA, one must complete 3 QAs by the end of the Fall semester.
Quality Assurance
Competency Form

The student must participate in and demonstrate an understanding of the test being performed, recommended frequency, how the test is performed, and what to do if the test is out of tolerance.

Please specify the QA task participated in: ___

Comments: __
__
__
__

Student Signature / Date

Medical Physicist Signature / Date

*A written report of procedure details must also be completed and posted to the course server.
 • *All failed competency attempts must be turned in.
Medical Dosimetry Educational Program
Objectives – Brachytherapy Clinical Rotation
Intracavitary and Interstitial Implants

<table>
<thead>
<tr>
<th>SKILL</th>
<th>RELATED CONCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation</td>
<td></td>
</tr>
<tr>
<td>Identify site of treatment</td>
<td>Determine possible applicators used for specific site</td>
</tr>
<tr>
<td>Indicate radioactive source to be used</td>
<td>Describe the properties of sources</td>
</tr>
<tr>
<td>Identify applicators specific to case</td>
<td>Distinguish between applicators as they are used clinically. Explain how applicator affects surface dose and percent depth dose and discuss shielding. Determine appropriate treatment system for patient (Fletcher, Manchester, MIR).</td>
</tr>
<tr>
<td>Know the difference between LDR and HDR</td>
<td>Explain the similarities and differences between LDR and HDR with regard to applicators, quality assurance, treatment preparation, dose prescription, planning, completion of treatment (paperwork)</td>
</tr>
<tr>
<td>Know the difference between manual and remote afterloading</td>
<td>Describe the similarities and differences between these two types of afterloading</td>
</tr>
<tr>
<td>Prepare applicators for treatment</td>
<td>Know implication of time and type of sterilization for applicator preparation</td>
</tr>
<tr>
<td>Prepare equipment for treatment</td>
<td>Discuss reason for all aspects of equipment preparation</td>
</tr>
<tr>
<td>Perform QA on applicators, isotopes, and treatment machines</td>
<td>Analyze logbook and reports for annual applicator QA and write analysis. Write an organized report discussing the process of source QA to include locating source, measuring activity, and inputting into treatment planning system. Refer to T.G. 59 in evaluating treatment machine QA, and analyze data, process and results.</td>
</tr>
<tr>
<td>Check in sources</td>
<td>Measure activity of sources and calculate the appropriate decay for the time of use</td>
</tr>
<tr>
<td>Know decay modes of radioisotopes and Appropriate shielding</td>
<td></td>
</tr>
<tr>
<td>Know emergency procedures in case of Radioisotope spill, lost source etc.</td>
<td>Evaluate each specific situation in determining appropriate action in case of emergency</td>
</tr>
</tbody>
</table>
SKILL Planning

Acquire localization films or proper imaging studies. Critique film for effective use in computer treatment planning with respect to ease and accuracy of dummy source identification. Recognize when necessary to contact dosimetrist to be involved with filming or to review films.

Understand process physician uses in preparing prescription sheet

Determine dose prescription through use of the following dosimetry concepts: decay constant, half-life, source strength, build-up factors

Calculate dose around a point source

Understand the use of “away-long” tables and when point source approximation is valid.

Perform radioactive decay calculations

Prepare treatment form

Apply rules for treatment system (for ca cervix) - LDR
Determine dwell positions and dwell times - HDR

Identify sources and interest points on films or on appropriate imaging studies.

Explain how orthogonal film coordinates are related and determined

Know significance of source and point location

Generate treatment plan giving dose distribution in three dimensions

Determine which views provide the most useful information to the physician

Verify input information for accuracy

Analyze treatment plan for accuracy

TREATMENT

Identify patient for treatment

Discuss implications of incorrect patient identification, including NRC regulations. Review Code of Federal Regulations, chapter 10, Parts 20 & 35, and discuss with radiation safety officer

Explain procedure to patient

Determine patient’s knowledge level and explain procedure that’s comprehensible to them

Assist physician in positioning applicators

Select and validate correct source for treatment

Differentiate among sources according to their properties

Perform treatment time calculations

Explain relationships among dose specification and prescription reference points, mg-hrs, mgRaeq-hrs, total reference air-kerma, 60 Gy reference volume dimensions

Identify various survey meters

Evaluate use of appropriate survey meter for specific situations. Determine if meter reading is adequate.

Complete paperwork, measurements, counts, and return seeds
Objectives for radiopharmaceutical administration are similar to those used for intracavitary and interstitial implants, with the following exceptions:

- Radiopharmaceutical replaces radioactive source
- Preparation for treatment includes the patient’s hospital room
- Isodose distributions not generated
Listed below are instructions describing the process used for evaluators to assess the student’s clinical competence, using the attached Clinical Competency Form and Objectives.

1. The Evaluators for Brachytherapy
 - Brachytherapy Technologist
 - Medical Dosimetrist
 - Medical Physicist

2. A list of required competencies is attached to the student’s information packet for the brachytherapy clinical rotation.

3. The student will inform the evaluators when he/she is ready to perform a specific competency.

4. Evaluators(s) will sign the competency form **only** if the student has successfully completed all aspects of the designated case as described in the brachytherapy objectives.

5. In the event the student is unable to successfully complete the specified competency, the clinical instructor will write a comment describing areas for improvement, and indicate this is a failed competency by checking the appropriate box. The CI and student should inform program staff of the failed competency. The student must prepare and make a second attempt at the competency.

6. Upon approval from all clinical instructors for each aspect of the competency, the student will submit the competency form to the dosimetry program director. As stated above, failed competency attempts must also be turned in.
Southern Illinois University Carbondale
Medical Dosimetry Program

Brachytherapy Clinical Competencies
Evaluators, Required Treatment Sites, Guidelines

Evaluators/Clinical Instructors
- Physics staff, brachytherapy technologists, and medical dosimetrists

Required Competencies- one of each

GYN
- Cylinder- Ir-192 or Gynsite applicator
- Tandem and Ovoids – Ir-192 (HDR)
- Ir-192 temporary interstitial implant

Prostate
- I-125 or Pd-103 permanent seed implant

Thyroid
- I-131 radiopharmaceutical administration

Breast and Sarcomas
- Ir-192 HDR – observe, assist and explain all aspects of procedure

Guidelines

Student will complete on his/her own, the six brachytherapy cases listed above, from start to finish by demonstrating skills necessary to prepare, plan and treat patient as described by the brachytherapy clinical objectives.

Successful completion of competency is determined by adherence to the attached clinical objectives and the summarized guidelines listed below. Also, see “Instructions to Evaluator and Student”.

- Participate in pre-plan if applicable
- Explain dose prescription and participate in calculation
- Localize implant using films or CT/MRI data set
- Run isodose plan, review plan with physician
- Order sources or radiopharmaceutical
- Record information once radioisotope arrives
- Verify quantity and measure activity
- Prepare seeds, catheters, and I-131
- Participate in implant administration
- Complete paperwork
- Conduct appropriate surveys
- Run post-plan and review with physician
- Unload patient
- Complete paperwork, measurements, counts, and return seeds
Written Report Guidelines

Purpose
Student will write a short report for each brachytherapy treatment site. The purpose of writing the reports is to supplement the required competencies of which the student will be tested, based on a selected patient’s case. Each sites competency grade will be determined from competency form and written report content.

Instructions
For each brachytherapy comp, write a one to two page typed report describing the patient’s case that you selected for use in testing your competency. Include the following information using this format: Content under numbers 1-7 should be written using a listing format, and content for numbers 8-10 should be written as an explanation in essay format. Number 12 should be answered in a step by step bullet format.

Report Content

1. Treatment site
2. Diagnosis
3. Stage
4. Concomitant modes of therapy
5. Radiation dose prescription
6. Critical structures and their limiting doses
7. Brachytherapy modality
8. Why are the above radiation therapy parameters (5-7) used to treat this patient?
10. What special considerations exist and how are they applied when planning this patient’s treatment?
11. List the CPT billing codes along with the documentation that is needed to justify the codes for this patient.
12. Student will also include a step by step written outline on how to perform the procedure for future reference.

Due Date
Student must submit each report to the Clinical Instructor within one week after completing the brachytherapy competency.

Grade based on
- How accurate the student represents content from the patient’s chart and treatment plan
- Use of correct grammar
- How clear is the student’s reasoning in explanations
Brachytherapy Competency List

Required Competencies- one of each and a competency form must be filled out for each site

<table>
<thead>
<tr>
<th>Anatomical Site</th>
<th>Competency Date</th>
<th>Date Competency Report Posted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GYN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder – Ir-192 or Gynsite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tandem and Ovoids – Ir-192 (HDR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ir-192 temporary interstitial implant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-125 or Pd-103 permanent seed implant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-131 radiopharmaceutical administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast and Sarcomas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ir-192 HDR – observe, assist and explain all aspects of procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachytherapy Procedure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At the end of the brachytherapy rotation the student must also turn in the three QA projects: Source Exchange, Machine/Source QA, and Applicator QA.

Date QA Projects Completed and Posted ________________________________

All failed competency attempts must be turned in. If a student fails 7 competency attempts (any combination from all rotations) at any time throughout the program or 4 competency attempts (one specific competency), the student will be removed from the program.

To achieve normal progress in brachytherapy, two competencies must be completed by the end of week three of the rotation.
Brachytherapy Competency Form

Tandem and Ovoids

Refer to the instructions for performing clinical assessment. The student must complete the competency by meeting the related objectives specified for each portion of the implant: preparation, planning, treatment.

Preparation/Calculation Sheet

Comments: __

__

__

__

__

Student Signature/Date ____________________________ Brachytherapy Technologist Signature/Date

Planning

Comments: __

__

__

__

__

Student Signature/Date ____________________________ Dosimetrist Signature/Date

Treatment

Comments: __

__

__

__

__

Student Signature/Date ____________________________ Brachytherapy Technologist Signature/Date

Physicist Signature
Southern Illinois University Carbondale
Medical Dosimetry Program

Brachytherapy Competency Form

Cylinder/Gynsite

Refer to the instructions for performing clinical assessment. The student must complete the competency by meeting the related objectives specified for each portion of the implant: preparation, planning, treatment.

Preparation/Calculation Sheet

Comments: __

__

__

__

Student Signature/Date ________________________________

Brachytherapy Technologist Signature/Date ________________________________

Planning

Comments: __

__

__

__

Student Signature/Date ________________________________

Dosimetrist Signature/Date ________________________________

Treatment

Comments: __

__

__

__

Student Signature/Date ________________________________

Brachytherapy Technologist Signature/Date ________________________________

Physicist Signature/Date ________________________________

Competency Attempt

1 2 3 4

Pass Fail
Brachytherapy Competency Form

HDR Iridium-192 GYN Interstitial Implant

Refer to the instructions for performing clinical assessment. The student must complete the competency by meeting the related objectives specified for each portion of the implant: preparation, planning, treatment.

Preparation/Calculation Sheet

Comments: ________________________________

__

__

__

Student Signature/Date ___________________ Brachytherapy Technologist Signature/Date

Planning

Comments: ________________________________

__

__

__

Student Signature/Date ___________________ Dosimetrist Signature/Date

Treatment

Comments: ________________________________

__

__

__

Student Signature/Date ___________________ Brachytherapy Technologist Signature/Date

__

Physicist Signature/Date
Thyroid Iodine-131 Radiopharmaceutical Administration

Refer to the instructions for performing clinical assessment. The student must complete the competency by meeting the related objectives specified for each portion of the implant: preparation, planning, treatment.

Preparation - room and explanation of procedure

Comments: __

Student Signature/Date Brachytherapy Technologist Signature/Date

QA Source - Check in

Comments: __

Student Signature/Date Brachytherapy Technologist Signature/Date

Physicist Signature/Date

Treatment - Room survey

Comments: __

Student Signature/Date Brachytherapy Technologist Signature/Date
Southern Illinois University Carbondale
Medical Dosimetry Program
Brachytherapy Competency Form

Prostate Permanent Seed Implant

Refer to the instructions for performing clinical assessment. The student must complete the competency by meeting the related objectives specified for each portion of the implant: preparation, planning, treatment.

Preparation

Comments: ________________________________

__

__

Student Signature/Date
Brachytherapy Technologist Signature/Date
Dosimetrist Signature/Date
Physicist Signature/Date

Pre-Planning and Post-Planning

Comments: ________________________________

__

__

Student Signature/Date
Dosimetrist Signature/Date

Treatment

Comments: ________________________________

__

__

Student Signature/Date
Brachytherapy Technologist Signature/Date
Physicist Signature/Date
Southern Illinois University Carbondale
Medical Dosimetry Program
Brachytherapy Competency Form

Breast HDR Treatment

Refer to the instructions for performing clinical assessment. The student must complete the competency by meeting the related objectives specified for each portion of the implant: preparation, planning, treatment.

Preparation- Measure and cut catheters

Comments: __

__

__

__

Student Signature/Date ____________________ Dosimetrist Signature/Date ____________________

Planning

Comments: __

__

__

__

Student Signature/Date ____________________ Dosimetrist Signature/Date ____________________

Physicist Signature/Date ____________________

Treatment

Comments: __

__

__

__

Student Signature/Date ____________________ Brachytherapy Technologist Signature/Date ____________________

Physicist Signature/Date ____________________

Competency Attempt
1 2 3 4
Pass Fail
Textbooks

- Perez, C.A., Brady, L.W., Principles and Practices of Radiation Oncology, Chapter 15 and chapter on HDR by Ezzell
- Khan, F. M., The Physics of Radiation Therapy
- Bentel, G., Treatment Planning and Dose Calculation in Radiation Oncology
- Principles and Practice of Brachytherapy, ed. by Subir Nag Futura Press

Reports

 ** Look for summary by Meigonni
- Code of Federal Regulations, chapter 10, parts 20 & 35

Journal Articles
Applicable articles from the following journals and those assigned by staff:

- Medical Dosimetry
- Medical Physics
- International Journal of Radiation Oncology Biology and Physics
- Radiotherapy and Oncology

Online Websites
- medicaldosimetry.org
- aapm.org/pubs/reports
- radiotherapy.com

Handouts
- Mutic, S., handouts on Radiopharmaceuticals
- Applicable problem sets and questions
- Li, Z., Annual Operator Refresher Training for HDR brachytherapy
- Handouts from related conferences

Personal Contacts and Responsibilities for Brachytherapy Rotation

- Brachytherapy Staff - Implant procedures, documentation, QA
- Physics Staff:
 Overall QA procedure, regulatory issues
 QA, Treatment planning, HDR commissioning
 Treatment planning software operation, commissioning and QA
 Source room preparation, isotope check-in, and QA sources
- Facility Radiation Safety Officer - Radiation safety
- Dosimetry Staff - Source localization, computer treatment planning, documentation – GYN and Prostate implants
- Scott Collins, C.M.D.- Coordination, brachytherapy rotation
Assignment Date/Instructions
A written report in bullet format stating the process of applicator QA, Source QA, and HDR Source Exchange is due at the end of the brachytherapy rotation. This report must also include the tolerances of acceptance, frequency and what to do if test is not within limits.

Clinical Instructors
Brachytherapy Physicists and technologists.

Applicator QA
- Review TG 56
- Review HDR Commissioning Report and radiographs found in Physics area
- Discuss with clinical instructor
- Review objectives provided by clinical instructor
- State the test, what is being tested, frequency, tolerance, and how performed.

Source QA
- Refer to TG 56
- Measure source activity and calculate decayed value
- Input source parameters and verify information in treatment planning system
- Determine accuracy of dose calculation
- State the test, what is being tested, frequency, tolerance, and how performed.

HDR Machine QA
- Take part in QA including source exchange and morning QA
- Refer to TG59 and TG56
- State the test, what is being tested, frequency, tolerance, and how performed.
Medical Dosimetry Educational Program

Objectives
Conventional and CT Simulator Clinical Rotations

Pre-Simulation

- Review resource material at least one day prior to scheduled simulation, in order to be prepared for the day’s cases.
- Discuss with physician the initial planning information as described on the simulation information sheet (specific site, beam arrangement, special considerations, etc.)
- Prepare simulation and CT room for each scheduled case.
- Communicate with patient by describing procedure, answering questions and setting them at ease.

Simulation

- Determine the appropriate patient position to optimally treat the patient
- Determine the appropriate immobilization and repositioning devices needed to optimally treat the patient.
- Construct immobilization devices
- Incorporate known treatment boarders, tumor location, limiting critical structures, and patient measurements to determine isocenter
- Use proper scanning techniques to perform simulation and use “Preview” procedures for setting isocenter if applicable
- Direct gantry, collimator and treatment couch to optimally treat the desired area, using specific calculations when necessary
- Determine SSDs for each field

Documentation

- Generate radiographs of each treatment field
- Obtain AP and Lateral set-up films if needed
- Place reference and field marks on patient’s skin and immobilization devices
- Record all set-up information in chart
- Enter information into the record and verify computer system
- Discuss nonstandard set-ups with treatment therapists and dosimetrists
Medical Dosimetry Educational Program
Conventional Simulation and CT Simulation Clinical Rotation
References/Reading Material

Procedure Manuals
- CT Simulation
- Conventional Simulation
- Treatment Procedures located in physician staff rooms
- Dosimetry Manuals

Textbooks
- Perez, C.A., Brady, L.W., Principles and Practices of Radiation Oncology
- Khan, F.M. & Potish, R.A., Treatment Planning in Radiation Oncology
- Bentel, G., Radiation Therapy Planning

Professional Journals
- Medical Dosimetry
- Radiation Therapist
- Radiologic Technology
- Medical Physics
- International Journal of Radiation Oncology Biology and Physics
- Radiotherapy and Oncology

Websites
- asrt.org
- medicaldosimetry.org
- apm.org
- radiotherapy.com

Faculty and Clinical Instructors
- Simulation Radiation Therapists
- Medical Physicists
- Program Director
Listed below are instructions describing the process used for evaluators to assess the student’s clinical competence, using the attached Clinical Competency Form and Objectives.

1. The Evaluators for conventional and CT simulation are the Simulation Radiation Therapists.

2. A list of required competencies is attached to the student’s information packet for the simulator clinical rotation.

3. The student will inform the evaluators when he/she is ready to perform a specific competency.

4. Evaluators(s) will sign the competency form only if the student has successfully participated in all aspects of the designated case as described in the simulation objectives and guidelines.

5. In the event the student is unable to successfully complete the specified competency, the clinical instructor will write a comment describing areas for improvement, and refrain from signing the competency form. The student must prepare and make a second attempt at the competency.

6. Upon approval from all clinical instructors for each aspect of the competency, the student will submit the competency form to the dosimetry program director.

7. No paper required on competencies.
Medical Dosimetry Educational Program
Evaluators, Clinical Location, Required Treatment Sites
Conventional Simulation and CT Simulation Clinical Competencies

Clinical Instructors/Evaluators

• Simulation Radiation Therapists

Location/Timeframe- if virtual simulation is part of the duties of a simulation therapist, i.e. contouring and putting on beams, the student should perform these duties as well.

• 95% of rotation: CT Simulation
• 5% of rotation: Conventional Simulation- Not available in most clinics

This is just a suggestion; spend the required amount of time to complete competencies.

Treatment Sites

The student will perform all aspects of the clinical competency on own, as described by the simulation objectives on the sites listed below:

GYN Pelvis Rectum Spine Lung Breast – tangents

The student will assist in the simulation of each of the following anatomical sites and explain the entire procedure as described by the simulation objectives, on the sites listed below:

* For the sites listed in which no clinical cases are performed during the two-week clinical rotation, the student must explain to the clinical instructor how the procedure is performed, covering the simulator objectives.

Abdomen Brain IMRT Head and Neck Mantle/Periaortics Pediatric Lung or Esophagus Brain with contrast Breast, IM, SCV Extremity Prostate 4D Study Stereotactic (ESRT)
Simulation Competency List

Required Competencies - A competency form must be filled out for each procedure.

<table>
<thead>
<tr>
<th>Anatomical Site</th>
<th>Competency Date</th>
<th>Conventional or CT Simulation</th>
<th>List Therapist Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>GYN Pelvis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdomen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head and Neck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantle/Periaortics (Most likely Mock)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediatric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung/Esophagus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast Tangents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast, IM, SCV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain with contrast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMRT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stereotactic (ESRT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extremity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All failed competency attempts must be turned in. If a student fails 7 competency attempts (any combination from all rotations) at any time throughout the program or 4 competency attempts (one specific competency), the student will be removed from the program.

To achieve normal progress in simulation, all competencies must be completed by the end of the rotation (week two).
Medical Dosimetry Educational Program
Simulation Competency Form

Refer to the instructions for performing clinical assessment. The student must complete the competency by meeting the related objectives specified for each portion of the simulation.

Site: ___________________________ Conventional or CT

Comments: __

__

__

__

__

___________________________________ Student Signature / Date

___________________________________ Simulator Therapist Signature / Date

*All failed competency attempts must be turned in.
Medical Dosimetry Educational Program

Guidelines
Treatment Aid Paper

Objectives (attached)

Must include how the following items are constructed/used and list limitations for use.

- Photon Blocks
- Electron Blocks
- Decimal Compensator
- Field in Field planning
- Compensating Filters to include historical data on both lucite and Ellis.
- Custom Bolus

Assessment

- Competencies
- Assignments
- Written Journal

Resources

- Contacts
 - Blockmaker, Dosimetrist, Physicist, Radiation Therapist
- Procedure Manuals
 - Blockroom
 - Dosimetry
- Textbooks
 - Perez, C.A., Brady, L.W., Principles and Practices of Radiation Oncology
 - Khan, F.M. & Potish, R.A., Treatment Planning in Radiation Oncology
 - Kahn, F. M., The Physics of Radiation Therapy
 - Bentel, G., Treatment Planning and Dose Calculation in Radiation Oncology
 - Bentel, G., Radiation Therapy Planning
- Professional Journals
 - Medical Dosimetry
 - Medical Physics
 - International Journal of Radiation Oncology Biology and Physics
 - Radiotherapy and Oncology
- Websites
 - asrt.org
 - medicaldosimetry.org
 - aapm.org
 - radiotherapy.com
Medical Dosimetry Educational Program

Objectives
Treatment Aid Fabrication

Cerrobind Blocks
- Explain differences in constructing photon and electron blocks
- Understand the aspects of block construction – preparation (film, styrofoam, machine) cutting, pouring, knocking out, filing, mounting, labeling, QA
- Evaluate the accuracy of finished product
- Explain how to correct an inaccurate finished treatment device
- Describe how to modify block for minor adjustment once patient is under treatment
- Explain why cerrobend is used over lead for custom blocking in radiation therapy treatment fields

Field in Field Planning
- Explain why used
- Describe advantages and disadvantages of this technique
- Describe method

Compensating Filters and Bolus
- Describe all aspects of compensating filter construction – (.Decimal, Ellis, etc) tray preparation, reference point selection, assembly, labeling
- Explain why selected metals are used
- Describe other types of compensating filters used in radiation therapy departments throughout the country
- Explain the specific uses of various compensating filters
- Provide examples of anatomical sites using custom bolus (Can be .Decimal as well)
- Explain why various types of custom bolus are used

Special Cases
- Explain the construction of partial transmission blocks
- Describe how to accommodate radiographs containing parameters which cannot be achieved with the existing block cutting machinery.

Safety and Quality Assurance
- Understand safety procedures of work in the blockroom
- Describe various aspects of quality assurance for blocks, MLCs, compensating filters, and bolus

Complete paper according to guidelines and objectives.
Southern Illinois University Carbondale
Medical Dosimetry Program
External Beam Rotation
Goals and Objectives

Goals

Student will evaluate patient’s case, consider physician’s prescription, delineate normal structures from CT images, utilize virtual simulation, optimize a plan for treatment, discuss plan with Dosimetrist, Physician, Physicist, and Radiation Therapist, document patient’s set-up and plan, use patient measurements and set-up parameters to calculate fields for treatment, enter set-up and dose into the treatment verification computer system.

Objectives

Using the department’s virtual simulation software, treatment planning systems and record and verify system, the student will meet the following objectives for each treatment site.

1. Evaluate the CT study and patient set-up information for appropriate use in planning the specified treatment site, and then delineate the associated normal organs. Use image fusion in applicable cases.

2. Discuss planning information with Radiation Oncologist to include tumor margin, dose prescription, critical structure dose, and possible beam arrangement.

3. Optimize a plan of treatment by incorporating the discussed information, along with isocenter placement, specific beam modifiers, various radiation modalities, and beam weighting, to improve the dose distribution of the plan.

4. Evaluate dose to the tumor and normal organs, along with the practicality of implementing the plan clinically.

5. Discuss the completed plan with the Radiation Oncologist, Physicist and Radiation Therapist for their feedback and approval.

6. Prepare documentation for the plan, calculate monitor units and special points of interest, enter record and verify information, and record treatment considerations appropriately in treatment chart.
Southern Illinois University Carbondale
Medical Dosimetry Program
External Beam Clinical Rotation Schedule and Assignments

- **Days**
 Monday – Friday

- **Hours**
 7:30a.m. – 4:30 p.m., with hours extending prior and after these listed hours when clinical responsibilities are necessary

* Student will participate in less frequently treated sites/techniques (such as craniospinal, Hodgkin’s disease and total nodal irradiation) throughout external beam rotation regardless of assigned rotation

** Scheduled external beam rotations do not include IMRT cases unless the students are at the external clinical sites or DL centers or patient load permits. Most of the treatment planning rotations should be spent performing 3D treatment planning. If a body part listed in the 3D competency list is performed with IMRT at that clinic, the student may perform the competency using IMRT and count it for 3D competency. Student will also cover IMRT material during a dedicated clinical rotation.

*** Student must complete at least three competencies at each clinical rotation. Even if a student has all the required competencies complete they must perform a minimum of three competencies at each facility.

- **Priority of Responsibilities while in clinic**
 1. Related planning and assignments dealing with currently scheduled unit
 2. Incomplete competency from prior unit(s)
 3. Planning related to next scheduled unit

- **Assignments**
 - **Competency**
 - Student will select a patient from each unit to use as a case study for testing competency. To successfully complete the competency, the student will use the course objectives as a guide, and perform all aspects of the patient’s planning process, beginning with contouring the CT and ending with final documentation for treatment. The competency includes active participation of the planning process, discussion with the clinical instructor throughout the process, and a final written report.
 - **Isodose Homework**
 - During the students first external beam rotation students must complete the Isodose homework posted on Desire2Learn.
 - **Conferences/Reports**
 - **Written Journal**
 - **Evaluations**

- **Additional Guidelines for student throughout clinical rotation and in preparation for competency**
 - During the first week of each unit rotation, student will observe the medical dosimetrists on many clinical cases, and then by the end of the week perform most aspects of treatment planning with assistance from clinical instructors.
 - By the second week of the rotation, the student should perform all aspects of treatment planning with minimal assistance. Early in the second week, the student should begin looking for a patient to use as his/her competency/case study.
 - By the third week, the student will complete his/her competency and participate in clinical treatment planning, acting in the role of a Medical Dosimetrist.
 - The student should keep in mind that during the clinical rotation, he/she will be working on several cases at one time, and should stay organized with each patient going through the planning process.
• Quality Assurance Guidelines

Student is involved in treatment machine quality assurance throughout the Dosimetry Program. During his/her external beam treatment planning rotation, the student will:

- Observe and participate with dosimetrist and/or physicists in monthly QA of linear accelerators and simulators
- Perform successfully, on own, with supervision of dosimetrist and/or physicist, one treatment machine QA for the following treatment machines:
 - Varian dual energy linear accelerator.
 - Elekta linear accelerator or second linear accelerator at site.
 - Daily constancy check- this may be done at outside training centers.
- Write a report for QA completed on own and have clinical instructor read, comment and sign report. This report should include the tests performed, test tolerance, recommended frequency and how to actually perform the test. Turn signed report in to program director

• Tips for External Beam Rotation

- During external beam rotations the student must participate in all the activities that an employed dosimetrist performs.
- Students should focus on 3D treatment planning when available but may run IMRT plans also.
- If a body part listed in the 3D competency list is performed with IMRT at that clinic, the student may perform the competency using IMRT and count it for 3D competency
- During the first 10 weeks of the fall and spring semesters, students must complete 20 journal article summaries (average 2 per week). The second ten weeks of the fall and spring semesters, students will perform two major research papers. One paper will be completed for each semester.
 - End of approximately 19th week- final paper turned in for grade. Paper may be eligible for submission to professional journal if appropriate.
- Students will participate in the monthly QAs performed at each of the facilities.
- While in the external beam rotations, the student should rotate to see some scans performed on a PET/CT scanner if available.
The following sites or cancer types must have one competency evaluation form/case study report (see attached). In addition to completing competency case studies, student should follow through on a variety of patient’s treatment plans for all sites. These competencies may be performed either with IMRT or standard external beam planning depending on how they are performed at you specific clinic site. (Students must still complete the required IMRT competencies also.)

This form is to be used as a documentation summary of cases. Competency case studies must also be documented using the appropriate objective/competency evaluation form. All completed cases must meet the objectives listed on the attached form to be considered a successful competency.

A minimum of three competencies must be completed at each clinical site. All failed competency attempts must be turned in. If a student fails 7 competency attempts (any combination from all rotations) at any time throughout the program or 4 competency attempts (one specific competency), the student will be removed from the program.

To achieve normal progress in external beam, one competency must be completed by the end of week five of the rotation.

Dosimetrist must initial and date competency form upon student’s completion of cases.

<table>
<thead>
<tr>
<th>Anatomical Site</th>
<th>Method IMRT or 3D</th>
<th>Competency Date</th>
<th>Date Case Study Filed</th>
<th>List Dosimetrist Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Beam Treatment Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYN pelvis (periaortics)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantle (most likely test patient via written report)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarcoma/Extremity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung (3D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast, Tangents Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast, Multi-port</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI Abdomen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craniospinal (most likely test patient)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head & Neck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Fusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconstruction of Previous Treatment with Current Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Procedure – protocol, IGRT, breath hold, SRT, emergency sim and treat, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Case #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Case #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Medical Dosimetry Student will use each treatment site as a case study to test competency. Student must successfully complete the competency by meeting the objectives specified for each aspect of the treatment plan, and writing a report that meets the attached guidelines. Next to each numbered objective, check whether the student was successful (S) or unsuccessful (U) in meeting the objective during the competency, or check appropriately if objective was not applicable (N/A) to the specific site.

Treatment Site: _______________________________

<table>
<thead>
<tr>
<th>Course Objectives</th>
<th>Competency Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughout the clinical rotation, the Dosimetry Student will participate in the following activities and by the end of each unit, on his/her own, will:</td>
<td>S U N/A</td>
</tr>
<tr>
<td>1. Evaluate the CT study and patient set-up information for appropriate use in planning the specified treatment site, and then delineate the associated normal organs. Use image fusion in applicable cases.</td>
<td></td>
</tr>
<tr>
<td>2. Discuss planning information with Radiation Oncologist to include tumor margin, dose prescription, critical structure dose, and possible beam arrangement.</td>
<td></td>
</tr>
<tr>
<td>3. Optimize a plan of treatment by incorporating the discussed information, along with isocenter placement, specific beam modifiers, various radiation modalities, and beam weighting, to improve the dose distribution of the plan.</td>
<td></td>
</tr>
<tr>
<td>4. Evaluate dose to the tumor and normal organs, along with the practicality of implementing the plan clinically.</td>
<td></td>
</tr>
<tr>
<td>5. Discuss the completed plan with the Radiation Oncologist, Physicist and Radiation Therapist for their feedback and approval.</td>
<td></td>
</tr>
<tr>
<td>6. Prepare documentation for the plan, calculate monitor units and special points of interest, enter record and verify information, and record treatment considerations appropriately in treatment chart.</td>
<td></td>
</tr>
</tbody>
</table>

________________________ ___________________________
Student Signature / Date Medical Dosimetrist Signature / Date

*Written case report and competency form should be posted to the Desire2Learn server (must be submitted together).
*The chapter summaries include chapters 1 - 9 of Vann and chapter 20 of Khan. These can be posted at any time through the semester a specific competency area is completed.

**Each failed competency attempt must be turned in.
***If writing a report in place of a competency, the report must be discussed with clinical staff and a competency form completed.
Written Report Guidelines

Purpose
Student will write 19 short reports, one for each treatment site of his/her External Beam Clinical Practicum. The purpose of writing the reports is to supplement the 19 required competencies of which the student will be tested, based on a selected patient’s case. Each sites competency grade will be determined from 1) treatment planning practical exam in the clinic, 2) written report of the case used for the practical exam, and 3) corresponding Vann chapter summary.

Instructions
For each of the external beam competencies, write a one to two page typed report describing the patient’s case that you selected for use in testing your competency. Include the following information using this format: Content under numbers 1-8 as well as 12 should be written using a listing format, and content for numbers 9-11 should be written as an explanation in essay format. **Numbers 1-12 should be no longer than 1-2 pages typed.** Numbers 12 and 13 should be answered in a step by step bullet format.

- **Report Content**
 1. Treatment site
 2. Diagnosis
 3. Stage
 4. Concomitant modes of therapy
 5. Radiation dose prescription
 6. Critical structures and their limiting doses
 7. Beam arrangement and modality
 8. Beam modifiers
 9. Why are the above radiation therapy parameters (5-8) used to treat this patient?
 11. What special considerations exist and how are they applied when planning this patient’s treatment?
 12. List the CPT billing codes along with the documentation that is needed to justify the code for this patient.
 13. Student will also include a step by step written outline on how to perform the procedure for future reference.

Due Date
Student must post each report to Desire2Learn within one week after completing the competency.

Grade based on
- How accurate the student represents content from the patient’s chart and treatment plan
- Use of correct grammar
- How clear is the student’s reasoning in explanations
Medical Dosimetry Program
IMRT Rotation
Objectives and Competency List

The student will participate in the activities listed below throughout his/her IMRT rotation.

Student must complete six competencies by the end of IMRT rotation: one for each of the following anatomical locations and an extra site:

<table>
<thead>
<tr>
<th>Anatomical Site</th>
<th>Competency Date</th>
<th>List Dosimetrist Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelvic Lymph Nodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head and Neck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participate in a Tomotherapy Plan if available or complete an additional IMRT plan. i.e. Breast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to the above competencies, student must participate in all aspects of as many IMRT patients as possible.

All the above cases should be performed on real clinical patients if possible. At a minimum, the pelvic lymph nodes and H&N cases must be on current clinical cases.

References
Refer to the journals and websites listed on reference list from brachytherapy and simulator clinical rotations. Also refer to Khan, “The Physics of Radiation Therapy” 5th edition.

Assignment
Outline chapter 20 of Khan, “The Physics of Radiation Therapy” 5th edition. This outline is due by the end of the rotation. List the major points listed in this chapter. Suggest this be submitted in bullet format.

All failed competency attempts must be turned in. If a student fails 7 competency attempts (any combination from all rotations) at any time throughout the program or 4 competency attempts (one specific competency), the student will be removed from the program.

To achieve normal progress in IMRT, one competency must be completed by the end of week five of the rotation.
Medical Dosimetry Program
IMRT Rotation
Competency Report Guidelines

When submitting the IMRT competency a case report must also be submitted. Include the following information using this format: Content under numbers 1-8 should be written using a listing format, and content for numbers 9-11 should be written as an explanation in essay format. **Numbers 1-11 should be no longer than 1-2 pages typed.** Number 12 should be answered in a step by step bullet format.

- **Report Content**
 1. Treatment site
 2. Diagnosis
 3. Stage
 4. Concomitant modes of therapy
 5. Radiation dose prescription
 6. Critical structures and their limiting doses
 7. Beam arrangement and modality
 8. Beam modifiers
 9. What optimization methods were used to successfully complete this plan?
 11. List the CPT billing codes along with the documentation that is needed to justify the code for this patient.
 12. Student will also include a step by step written outline on how to perform the procedure for future reference.
The competency requires the student follow a patient from start to finish, assist and correctly explain every aspect listed below on for specific case. The designated staff (therapist, dosimetrist, physician, and physicist) will sign off in respective areas, verifying successful completion of each competency section.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Staff’s Signature/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Set-up films (dosimetrist)</td>
<td></td>
</tr>
<tr>
<td>2) Registration (dosimetrist)</td>
<td></td>
</tr>
<tr>
<td>3) Normal tissue contouring (dosimetrist)</td>
<td></td>
</tr>
<tr>
<td>4) M.D. target volume delineation, dose prescription, and planning (physician)</td>
<td></td>
</tr>
<tr>
<td>5) Planning (dosimetrist and physicist)</td>
<td></td>
</tr>
<tr>
<td>6) Physicist review of plan (physicist)</td>
<td></td>
</tr>
<tr>
<td>7) Physicist QA on treatment machine (physicist)</td>
<td></td>
</tr>
<tr>
<td>(may be for similar case)</td>
<td></td>
</tr>
<tr>
<td>8) Documentation (dosimetrist)</td>
<td></td>
</tr>
<tr>
<td>9) Record and Verify Entry (dosimetrist)</td>
<td></td>
</tr>
<tr>
<td>10) Observe treatment….prefer first day (therapist)</td>
<td></td>
</tr>
</tbody>
</table>

*All Failed competency attempts must be turned in.

**Written case report should be posted to the Desire2Learn server along with competency form.
Medical Dosimetry Educational Program

Objectives
Chart Check Rotation

The student will participate in the following reviews throughout the clinical rotation and write a summary paper for each procedure. The report should detail how the tasks below are performed, what is reviewed, and tolerances accepted. Provide specific details in this report.

Weekly Chart Reviews
Review the following information for consistency and accuracy
- Dose Sheet
- Dose prescription, daily dose record, calculation sheet
- Isodose Plan
- Set-up sheet
- Shift sheet
- Diode measurements

Initial Treatment Check
Review the following information for accuracy
- Monitor unit calculation
- Record and verify entry
- Set-up parameters
- Isocenter shift
- Radiographs
- Isodose if available

External Beam Isodose Review
Perform isodose review for agreement and accuracy of the following information
- Set-up parameters
- Critical structure dose
- Target volume dose

Brachytherapy Isodose Review
Review brachytherapy isodose plans for agreement and accuracy of the following information
- Source placement
- Interest point location
- Prescription dose
- Interest point dose

Special Procedures/Measurements
Participate in the following projects and write a report on the process for each.
- Pacemakers
- TLDs
- Ion chamber measurements
- Output checks using film (not performed much anymore so most likely just a report)
Schedule, Location, and Primary Physics Contact
Dosimetry students will spend two weeks working with all physicists in the chart check area, but one primary physicist is assigned as a contact person and to ensure competencies are met. Discuss point physicist with program director at beginning of rotation.

Procedure Manuals
- Chart Check Protocol
- Dosimetry and Physics Manuals
- Treatment Procedures located in physician staff rooms

Reports
- Task Group 40, 142 or the latest Task Group report
- American College of Radiology Standards for Radiation Oncology Charting

Textbooks
- Perez, C.A., Brady, L.W., Principles and Practices of Radiation Oncology
- Khan, F.M. & Potish, R.A., Treatment Planning in Radiation Oncology
- Khan, F. M., The Physics of Radiation Therapy
- Bentel, G., Treatment Planning and Dose Calculation in Radiation Oncology
- Bentel, G., Radiation Therapy Planning
- Applicable protocols for plans being reviewed

Professional Journals
- Medical Dosimetry
- Medical Physics
- International Journal of Radiation Oncology Biology and Physics
- Radiation Therapist
- Radiotherapy and Oncology

Websites
- medicaldosimetry.org
- aapm.org
- radiotherapy.com
- asrt.org

Faculty and Clinical Instructors
- Medical Physicists- A point person will be provided
- Medical Dosimetrists
- Program Director
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Date</th>
<th>Date Written Report and Competency Posted (together) to Desire2Learn</th>
<th>List Physicist Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Calculation Check</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isodose Plan Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pacemakers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• TLDs (most likely not performed, write report)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ion chamber measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Output checks using film (most likely not performed, write report)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Physics Rotation Assignment</td>
<td>Date Turned In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacemaker Paper</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All failed competency attempts must be turned in. If a student fails 7 competency attempts (any combination from all rotations) at any time throughout the program or 4 competency attempts (one specific competency), the student will be removed from the program.

*A written report of the procedure details including what was reviewed, steps taken during the review and any tolerances that are referenced. Also include the CPT billing codes that are charged. Be very specific in this report and it must be posted to the course server with the competency form.

*To achieve normal progress in physics, all competencies must be completed by the end of the rotation.
Refer to the instructions for clinical assessment. The student must complete the competency by meeting the related objectives.

Please circle the specific competency:

Chart Review
Initial Calculation Check
Isodose Plan Review
Special Procedure:______________________________

Comments: __
__
__
__

Student Signature / Date

Medical Physicist Signature / Date

*A written report of the procedure details including what was reviewed, steps taken during the review and any tolerances that are referenced. Be very specific in this report and it must posted to the course server with the competency form.

**All failed competency attempts must be turned in.
1) Describe the process physics goes through when notified that a patient has a pacemaker.

2) Explain how a pacemaker impacts the patient's treatment.

3) Explain how a pacemaker impacts treatment planning.

4) Describe the measures taken to avoid harm in treating patients with pacemakers.

5) What role does the dosimetrist play in working on patients with pacemakers?
Medical Dosimetry Program
Gamma Knife/Stereotactic Clinical Rotation
Student Objectives, Competencies and Assignment

The student will participate in the activities listed below throughout his/her Gamma Knife/Stereotactic rotation.

Competency at the end of the rotation requires the student complete the following objectives. The designated staff (physicist, therapist, physician) will sign off in respective areas, verifying successful completion of each competency section.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Staff initials & date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observe and explain process of head frame placement with neurosurgeon</td>
<td></td>
</tr>
<tr>
<td>Observe and explain treatment planning process with medical physicist</td>
<td></td>
</tr>
<tr>
<td>Interact with nurses from radiation oncology and neurosurgery, and explain their role in radiosurgery and Gamma Knife treatments</td>
<td></td>
</tr>
<tr>
<td>Explain dose prescription with radiation oncologist</td>
<td></td>
</tr>
<tr>
<td>Observe radiation therapist treating the patient</td>
<td></td>
</tr>
<tr>
<td>Observe, assist and explain QA process</td>
<td></td>
</tr>
</tbody>
</table>

Contact
Physicist

References
Refer to the journals and websites listed on reference list for brachytherapy and simulator clinical rotations

Assignments
- If available review the educational CD on Gamma Knife/Radiosurgery and write a summary, elaborating on the treatment planning. Be sure to include how we handle special circumstances that arise with various aspects of the patient’s treatment. Post this report on Desire2Learn.

- If the CD is not available, write a report on the steps a patient goes through for the procedure. Also discuss the treatment planning process for Gamma Knife/Radiosurgery. Be sure to include how we handle special circumstances that arise with various aspects of the patient’s treatment. Post this report on Desire2Learn.

- Participate in the Gamma knife QA and write the paper for this rotation.
Written Reports (See RAD 525, 545, and 560 Syllabi)

A minimum of two journal summaries per week must be written on during the first 10 weeks of each semester. During the fall semester, the first reports will be on assigned papers. The reports must be posted to Desire2Learn upon completion.

Post the summary, front page of the journal and the front page of the article to Desire2Learn upon completion.

Note: Several of the readings for this area will be assigned readings during the beginning of program.
End of Program Paperwork

Students should keep a three ring binder with all clinical paperwork for the program. Everything in this binder will be posted to Desire2Learn. The D2L postings will be the permanent record maintained by the program.

All clinical/competency paperwork with checklists and all reports should be kept in a binder in the following order:

i. Time Sheet- page 43 of this book (at front of each rotation)
ii. Growth Evaluations of Student- page 42 of this book (Put all in one section)
iii. Rotation Evaluations from Student- (Put all in one section, one for each rotation)
iv. Brachytherapy
v. Simulation
vi. Treatment Aids
vii. External Beam Planning
viii. Dose Calcs/Chart Review
ix. IMRT
x. Gamma Knife/Stereo
xi. Special Measurements
xii. Tx Machine QA
xiii. Research Papers
xiv. Weekly Journal
xv. Safety Orientation Attendance Sheet

Each student should keep a copy of the binder for their individual records.
For each clinical site a student must attend a safety orientation for the respective facility. This at a minimum must address hazards (fire, electrical, chemical), emergency preparedness, medical emergencies, HIPAA, and Standard Precautions. Radiation safety should also be discussed. By signing below, the student is verifying attendance to this orientation.

Clinic Site: _____________________________________

Please mark all topics below when covered:

____ Hazards (Fire, Electrical, Chemical)
____ Emergency Preparedness
____ Medical Emergencies
____ HIPAA
____ Standard Precautions.

Other, please list:

__
__
__

Student Signature / Date
Southern Illinois University Carbondale
Medical Dosimetry Program

Evaluation of Clinical Rotation From Student

Clinical Location___

Clinical Rotation__________________________________ Date_________________

Please rate the following categories. 5=excellent, 1=poor, 0=not applicable
This evaluation must be submitted along with all competency forms prior to your last day at the facility.

This evaluation will be held in confidence and is performed to insure that the facility is meeting the needs of the student therapist. Should any difficulties arise prior to the end of the semester, it is the responsibility of the student to notify the therapy program director immediately.

The facility provided adequate opportunity for completion of the required competencies. 5 4 3 2 1 0
The oncology staff was courteous, informative and helpful. 5 4 3 2 1 0
The clinical instruction and support facilitated my learning experience. 5 4 3 2 1 0
Medical (Physician) input was informative and helpful. 5 4 3 2 1 0
The overall clinical experience was a positive contribution toward my clinical education. 5 4 3 2 1 0

Please list any positive or negative comments below regarding the clinic site.

STUDENT COMMENTS & SIGNATURE:

__
__
__
__
__
__
__

This evaluation must be submitted at the end of each clinical rotation.
APPENDIX A
SIUC MEDICAL DOSIMETRY PREGNANCY POLICY

The SIUC Medical Dosimetry faculty recognize the basic premise of providing the pregnant student with the information to make an informed decision based on her individual needs and preferences. Thus all SIUC Medical Dosimetry students are provided with the following documents, contained in this Policy.

1. 32 Illinois Administrative Code, Chapter II Section 340.280, Subchapter b, Subsections (a) through (e) “Dose to an Embryo/Fetus”.
2. NCRP Report #116, 1993, Section 10 “Protection of the Embryo-Fetus”.

Finally, the SIUC Medical Dosimetry faculty believe it is the responsibility of the pregnant Medical Dosimetry student to advise her Clinical Instructor and Program Director voluntarily and in writing of her pregnancy and estimated date of the baby’s birth (delivery). Formal, voluntary notification (declaration of pregnancy) is the only means by which the clinical facility and the SIUC Medical Dosimetry program can ensure that the dose to the embryo-fetus is limited during the pregnancy (no to exceed 5 mSv [500 mrem]). In the absence of the voluntary, written disclosure, a student cannot be considered pregnant.

Therefore, at the beginning of the program, each SIUC Medical Dosimetry student shall read the documents in this Appendix, have his/her questions answered to his/her satisfaction, and choose to proceed with his/her Radiologic Sciences education as indicated on the Pregnancy Policy form contained herein. If a Medical Dosimetry student becomes pregnant during a clinical semester, it is still the student’s responsibility to advise her Clinical Instructor and Program Director voluntarily and in writing (only if she wishes to declare pregnancy) of her pregnancy and estimated date of the baby’s birth (delivery), and to indicate, on the Pregnancy Policy form, her decision towards the Medical Dosimetry program.

The voluntary, written disclosure of her pregnancy and her decision towards the Medical Dosimetry program will be kept in the pregnant student’s clinical file, maintained by the Program Director. Release of such information may occur only upon the written permission of the student in question.
PREGNANCY POLICY for MEDICAL DOSIMETRY

The Southern Illinois University at Carbondale (SIUC) Medical Dosimetry faculty believe it is the responsibility of the pregnant Medical Dosimetry student to advise her Clinical Instructor and Program Director voluntarily and in writing of her pregnancy and estimated date of her baby’s birth (delivery). Formal, voluntary notification of pregnancy is the only means by which the clinical facility and the University’s Medical Dosimetry program can ensure that the dose to the embryo-fetus is limited during the pregnancy not to exceed 5 mSv (500 mrem).

In the absence of the voluntary, written disclosure, a student cannot be considered pregnant.

To comply with this embryo-fetus dose limit, the pregnant Medical Dosimetry student has been given the following documents to read:

a. The January 1994 issue of the 32 Illinois Administrative Code, Chapter II Section 340.280, Subchapter b, Subsections (a) through (e) “Dose to an Embryo/Fetus”.
b. NCRP Report #116, 1993, Section 10 “Protection of the Embryo-Fetus”.

WAIVER:

I fully understand the contents of these documents, have had my questions answered to my satisfaction, and I choose to proceed with my Medical Dosimetry education as indicated below.

_____ I am fully aware of SIUC’s pregnancy policy and choose to continue my clinical and didactic education without modification or interruption. If I am currently pregnant or become pregnant while in the Medical Dosimetry program, I may notify my Clinical Instructor and Program Director voluntarily and in writing of my pregnancy with one of the options below if I want to declare pregnancy.

_____ I am pregnant and choose to continue my clinical and didactic education without modification or interruption. I accept full responsibility for my own actions and the health of my baby. Furthermore, I absolve, discharge, release, and hold harmless my Clinical site and its Oncology staff, and the Board of Trustees for Southern Illinois University together with its officers and employees (the Medical Dosimetry program its faculty) for any legal liability, claims, damages or complications that may occur during fetal growth, birth, and postnatal development of my baby.

_____ I am pregnant and choose to continue my clinical and didactic education with some modification of my clinical assignments. I will not participate in brachytherapy or gamma knife procedures. A grade of Incomplete “INC” will be given until I have completed all clinical education missed during my pregnancy. The completion of the “INC” may delay my sitting for the MDCB Exam.

_____ I am pregnant and choose to take a leave of absence from the clinical assignments during my pregnancy. A grade of Incomplete “INC” will be given until I have completed all clinical education missed during my pregnancy. The completion of the “INC” may delay my sitting for the MDCB Exam.

_____ I am pregnant and choose to take a leave of absence from the SIUC Medical Dosimetry program. If I notify the Program Director of my desire to return, I will be offered a position in the next class, the following year.

_____ I wish to withdraw my previous declaration of pregnancy.

I agree to comply with the above-stated policy and with my decision as indicated above.

___ _________________ _________
Student Signature Date

___ __________________________
Supervising Clinical Instructor Date

___ _________________ _________
Program Director Date

90
APPENDIX B
PRENATAL RADIATION EXPOSURE, REGULATORY GUIDE 8.13

A. INTRODUCTION

The Code of Federal Regulations in 10 CFR Part 19, “Notices, Instructions and Reports to Workers: Inspection and Investigations,” in Section 19.12, “Instructions to Workers,” requires instruction in “the health protection problems associated with exposure to radiation and/or radioactive material, in precautions or procedures to minimize exposure, and in the purposes and functions of protective devices employed.” The instructions must be “commensurate with potential radiological health protection problems present in the work place.”

The Nuclear Regulatory Commission’s (NRC’s) regulations on radiation protection are specified in 10 CFR Part 20, “Standards for Protection Against Radiation”; and 10 CFR 20.1208, “Dose to an Embryo/Fetus,” requires licensees to “ensure that the dose to an embryo/fetus during the entire pregnancy, due to occupational exposure of a declared pregnant woman, does not exceed 0.5 rem (5 mSv).” Section 20.1208 also requires licensees to “make efforts to avoid substantial variation above a uniform monthly exposure rate to a declared pregnant woman.” A declared pregnant woman is defined in 10 CFR 20.1003 as a woman who has voluntarily informed her employer, in writing, of her pregnancy and the estimated date of conception.

This regulatory guide is intended to provide information to pregnant women, and other personnel, to help them make decisions regarding radiation exposure during pregnancy. This Regulatory Guide 8.13 supplements Regulatory Guide 8.29, “Instruction Concerning Risks from Occupational Radiation Exposure” (Ref 1), which contains a broad discussion of the risks from exposure to ionizing radiation.

Other sections of the NRC’s regulations also specify requirements for monitoring external and internal occupational dose to a declared pregnant woman. In 10 CFR 20.1502, “Conditions Requiring Individual Monitoring of External and Internal Occupational Dose,” licensees are required to monitor the occupational dose to a declared pregnant woman, using an individual monitoring device, if it is likely that the declared pregnant woman will receive, from external sources, a deep dose equivalent in excess of 0.1 rem (1 mSv). According to Paragraph (e) of 10 CFR 20.2106, “Records of Individual Monitoring Results,” the licensee must maintain records of dose to an embryo/fetus if monitoring was required, and the records of dose to the embryo/fetus must be kept with the records of dose to the declared pregnant woman. The declaration of pregnancy must be kept on file, but may be maintained separately from the dose records. The licensee must retain the required form or record until the Commission terminates each pertinent license requiring the record.

The information collections in this regulatory guide are covered by the requirements of 10 CFR Parts 19 or 20, which were approved by the Office of Management and Budget, approval numbers 3150-0044 and 3150-
B. DISCUSSION

As discussed in Regulatory Guide 8.29 (Ref. 1), exposure to any level of radiation is assumed to carry with it a certain amount of risk. In the absence of scientific certainty regarding the relationship between low dose exposure and health effects, and as a conservative assumption for radiation protection purposes, the scientific community generally assumes that any exposure to ionizing radiation may cause undesirable biological effects and that the likelihood of these effects increases as the dose increases. At the occupational dose limit for the whole body of 5 rem (50 mSv) per year, the risk is believed to be very low.

The magnitude of risk of childhood cancer following in utero exposure is uncertain in that both negative and positive studies have been reported. The data from these studies “are consistent with a lifetime cancer risk resulting from exposure during gestation which is two to three times that for the adult” (NCRP Report No. 116, Ref. 2). The NRC has reviewed the available scientific literature and has concluded that the 0.5 rem (5 mSv) limit specified in 10 CFR 20.1208 provides an adequate margin of protection for the embryo/fetus. This dose limit reflects the desire to limit the total lifetime risk of leukemia and other cancers associated with radiation exposure during pregnancy.

In order for a pregnant worker to take advantage of the lower exposure limit and dose monitoring provisions specified in 10 CFR Part 20, the woman must declare her pregnancy in writing to the licensee. A form letter for declaring pregnancy is provided in this guide or the licensee may use its own form letter for declaring pregnancy. A separate written declaration should be submitted for each pregnancy and a student can rescind their declaration at any time.

C. REGULATORY POSITION

1. Who Should Receive Instruction

Female workers who require training under 10 CFR 19.12 should be provided with the information contained in this guide. In addition to the information contained in Regulatory Guide 8.29 (Ref. 1), this information may be included as part of the training required under 10 CFR 19.12.

2. Providing Instruction

The occupational worker may be given a copy of this guide with its Appendix, an explanation of the contents of the guide, and an opportunity to ask questions and request additional information. The information in this guide and Appendix should also be provided to any worker or supervisor who may be affected by a declaration of pregnancy or who may have to take some action in response to such a declaration.

Classroom instruction may supplement the written information. If the licensee provides classroom instruction, the instructor should have some knowledge of the biological effects of radiation to be able to answer
questions that may go beyond the information provided in this guide. Videotaped presentations may be used for classroom instruction. Regardless of whether the licensee provides classroom training, the licensee should give workers the opportunity to ask questions about information contained in this Regulatory Guide 8.13. The licensee may take credit for instruction that the worker has received within the past year at other licensed facilities or in other courses or training.

3. Licensee’s Policy on Declared Pregnant Women

The instruction provided should describe the licensee’s specific policy on declared pregnant women, including how those policies may affect a woman’s work situation. In particular, the instruction should include a description of the licensee’s policies, if any, that may affect the declared pregnant woman’s work situation after she has filed a written declaration of pregnancy consistent with 10 CFR 20.1208.

The instruction should also identify who to contact for additional information as well as identify who should receive the written declaration of pregnancy. The recipient of the woman’s declaration may be identified by name (e.g., John Smith), position (e.g., immediate supervisor, the radiation safety officer), or department (e.g., the personnel department).

4. Duration of Lower Dose Limits for the Embryo/Fetus

The lower dose limit for the embryo/fetus should remain in effect until the woman withdraws the declaration in writing or the woman is no longer pregnant. If a declaration of pregnancy is withdrawn, the dose limit for the embryo/fetus would apply only to the time for the estimated date of conception until the time the declaration is withdrawn. If the declaration is not withdrawn, the written declaration may be considered expired one year after submission.

5. Substantial Variations Above a Uniform Monthly Dose Rate

According to 10 CFR 20.1208(b), “The licensee shall make efforts to avoid substantial variation above a uniform monthly exposure rate to a declared pregnant woman so as to satisfy the limit in paragraph (a) of this section,” that is, 0.5 rem (5 mSv) to the embryo/fetus. The National Council on Radiation Protection and Measurements (NCRP) recommends a monthly equivalent dose limit of 0.05 rem (0.5 mSv) to the embryo/fetus once the pregnancy is known (Ref. 2). In view of the NCRP recommendation, any monthly dose of less than 0.1 rem (1 mSv) may be considered as not a substantial variation above a uniform monthly dose rate and as such will not require licensee justification. However, a monthly dose greater than 0.1 rem (1 mSv) should be justified by the licensee.

D. IMPLEMENTATION

The purpose of this section is to provide information to licensees and applicants regarding the NRC statt’s plans for using this regulatory guide.
Unless a licensee or an applicant proposes an acceptable alternative method for complying with the specified portions of the NRC’s regulations, the methods described in this guide will be used by the NRC staff in the evaluation of instructions to workers on the radiation exposure of pregnant women.
APPENDIX C
QUESTIONS AND ANSWERS CONCERNING PRENATAL RADIATION EXPOSURE

1. Why am I receiving this information?
 The NRC’s regulations (in 10 CFR 19.12, “Instructions to Workers) require that licensees instruct individuals working with licensed radioactive materials in radiation protection as appropriate for the situation. The instruction below describes information that occupational workers and their supervisors should know about the radiation exposure of the embryo/fetus of pregnant women.

 The regulations allow a pregnant woman to decide whether she wants to formally declare her pregnancy to take advantage of lower dose limits for the embryo/fetus. This instruction provides information to help women make an informed decision whether to declare a pregnancy.

2. If I become pregnant, am I required to declare my pregnancy?
 No. The choice whether to declare your pregnancy is completely voluntary. If you choose to declare your pregnancy, you must do so in writing and a lower radiation dose limit will apply to your embryo/fetus. If you choose not to declare your pregnancy, you and your embryo/fetus will continue to be subject to the same radiation dose limits that apply to other occupational workers.

3. If I declare my pregnancy in writing, what happens?
 If you choose to declare your pregnancy in writing, the licensee must take measures to limit the dose to your embryo/fetus to 0.5 rem (5 millisievert) during the entire pregnancy. This is one-tenth of the dose that an occupational worker may receive in a year. If you have already received a dose exceeding 0.5 rem (5 mSv) in the period between conception and the declaration of your pregnancy, an additional dose of 0.05 rem (0.5 mSv) is allowed during the remainder of the pregnancy. In addition, 10 CFR 20.1208, “Dose to an Embryo/Fetus,” requires licensees to make efforts to avoid substantial variation above a uniform monthly dose rate so that all the 0.5 rem (5 mSv) allowed dose does not occur in a short period during the pregnancy.

 This may mean that, if you declare your pregnancy, the licensee may not permit you to do some of your normal job functions if those functions would have allowed you to receive more than 0.5 rem, and you may not be able to have some emergency response responsibilities.

4. Why do the regulations have a lower dose limit for the embryo/fetus of a declared pregnant woman than for a pregnant worker who has not declared?
 A lower dose limit for the embryo/fetus of a declared pregnant woman is based on a consideration of greater sensitivity to radiation of the embryo/fetus and the involuntary nature of the exposure. Several scientific advisory groups have recommended (References 1 and 2) that the dose to the embryo/fetus be limited to a fraction of the occupational dose limit.

5. What are the potentially harmful effects of radiation exposure to my embryo/fetus?
 The occurrence and severity of health effects caused by ionizing radiation are dependent upon the type and total dose of radiation received, as well as the time period over which the exposure was received. See Regulatory Guide 8.29,
“Instruction Concerning Risks from Occupational Exposure” (Ref. 3), for more information. The main concern is embryo/fetal susceptibility to the harmful effects of radiation such as cancer.

6. Are there any risks of genetic defects?

Although radiation injury has been induced experimentally in rodents and insects, and in the experiments was transmitted and became manifest as hereditary disorders in their offspring, radiation has not been identified as a cause of such effect in humans. Therefore, the risk of genetic effects attributable to radiation exposure is speculative. For example, no genetic effects have been documented in any of the Japanese atomic bomb survivors, their children, or their grandchildren.

7. What if I decide that I do not want any radiation exposure at all during my pregnancy?

You may ask your employer for a job that does not involve any exposure at all to occupational radiation dose, but your employer is not obligated to provide you with a job involving no radiation exposure. Even if you receive no occupational exposure at all, your embryo/fetus will receive some radiation dose (on average 75 mrem [0.75 mSv]) during your pregnancy from natural background radiation.

The NRC has reviewed the available scientific literature and concluded that the 0.5 rem (5 mSv) limit provides an adequate margin of protection for the embryo/fetus. This dose limit reflects the desire to limit the total lifetime risk of leukemia and other cancers. If this dose limit is exceeded, the total lifetime risk of cancer to the embryo/fetus may increase incrementally. However, the decision on what level of risk to accept is yours. More detailed information on potential risk to the embryo/fetus from radiation exposure can be found in References 2-10.

8. What effect will formally declaring my pregnancy have on my job status?

Only the licensee can tell you what effect a written declaration of pregnancy will have on your job status. As part of your radiation safety training, the licensee should tell you the company’s policies with respect to the job status of declared pregnant women. In addition, before you declare your pregnancy, you may want to talk to your supervisor or your radiation safety officer and ask what a declaration of pregnancy would mean specifically for you and your job status.

In many cases you can continue in your present job with no change and still meet the dose limit for the embryo/fetus. For example, most commercial power reactor workers (approximately 93%) receive, in 12 months, occupational radiation doses that are less than 0.5 rem (5 mSv) (Ref. 11). The licensee may also consider the likelihood of increased radiation exposures from accidents and abnormal events before making a decision to allow you to continue in your present job.

If your current work might cause the dose to your embryo/fetus to exceed 0.5 rem (5 mSv), the licensee has various options. It is possible that the licensee can and will make a reasonable accommodation that will allow you to continue performing your current job, for example, by having another qualified employee do a small part of the job that accounts for some of your radiation exposure.

9. What information must I provide in my written declaration of pregnancy?

You should provide, in writing, your name, a declaration that you are pregnant, the estimated date of conception (only the month and year need be given), and the date that you give the letter to the licensee. A form letter that you can
use is included at the end of these questions and answers. You may use that letter, use a form letter the licensee has provided to you, or write your own letter.

10. To declare my pregnancy, do I have to have documented medical proof that I am pregnant?

NRC regulations do not require that you provide medical proof of your pregnancy. However, NRC regulations do not preclude the licensee from requesting medical documentation of your pregnancy, especially if a change in your duties is necessary in order to comply with the 0.5 rem (5 mSv) dose limit.

11. Can I tell the licensee orally rather than in writing that I am pregnant?

No. The regulations require that the declaration must be in writing.

12. If I have not declared my pregnancy in writing, but the licensee suspects that I am pregnant, do the lower dose limits apply?

No. The regulations require that you declare your pregnancy in writing. The United States Supreme Court has ruled (in United Automobile Workers International Union v. Johnson Controls, Inc., 1991) that “Decisions about the welfare of future children must be left to the parents who conceive, bear, support, and raise them rather than to the employers who hire those parents” (Reference 7). The Supreme Court also ruled that your employer may not restrict you from a specific job “because of concerns about the next generation.” Thus, the lower limits apply only if you formally declare your pregnancy in writing.

13. If I am planning to become pregnant but am not yet pregnant and I inform the licensee in writing, do the lower dose limits apply?

No. The requirement for lower limits applies only if you declare in writing that you are already pregnant.

14. What if I have a miscarriage or find out that I am not pregnant?

If you have declared your pregnancy in writing, you should promptly inform the licensee in writing that you are no longer pregnant. However, if you have not formally declared your pregnancy in writing, you need not inform the licensee of your nonpregnant status.

15. How long is the lower dose limit in effect?

The dose to the embryo/fetus must be limited until you withdraw your declaration in writing or you inform the licensee in writing that you are no longer pregnant. If the declaration is not withdrawn, the written declaration may be considered expired one year after submission.

16. If I have declared my pregnancy in writing, can I revoke my declaration of pregnancy even if I am still pregnant?

Yes, you may. The choice is entirely yours. If you revoke your declaration of pregnancy, the lower dose limit for the embryo/fetus no longer applies.

17. What if I work under contract at a licensed facility?

The regulations state that you should formally declare your pregnancy to the licensee in writing. The licensee has the responsibility to limit the dose to the embryo/fetus.
18. Where can I get additional information?

The references to this Appendix contain helpful information, especially Reference 3, NRC’s Regulatory Guide 8.29, “Instruction Concerning Risks from Occupational Radiation Exposure” for general information on radiation risks. The licensee should be able to give this document to you.

For information on legal aspects, see Reference 7, “The Rock and the Hard Place: Employer Liability to Fertile or Pregnant Employees and Their Unborn Children – What Can the Employer Do?” which is an article in the journal *Radiation Protection Management*.

You may telephone the NRC Headquarters at (301) 415-7000. Legal questions should be directed to the Office of the General Counsel, and technical questions should be directed to the Division of Industrial and Medical Nuclear Safety.

You may also telephone the NRC Regional Offices at the following numbers: Region I, (610) 337-5000; Region II, (404) 562-4400; Region III, (630) 829-9500; and Region IV, (817) 860-8100. Legal questions should be directed to the Regional Counsel, and technical questions should be directed to the Division of Nuclear Materials Safety.
REFERENCES FOR APPENDICIES B & C

Single copies of regulatory guides, both active and draft, and draft NUREG documents may be obtained free of charge by writing the Reproduction Distribution Services Section, OCIO, USNRC, Washington, DC 20555-0001, or by fax to (301) 415-2289, or by email to <DISTRIBUTION@NRC.GOV>. Active guides may also be purchased from the National Technical Information Service on a standing order basis. Details on this service may be obtained by writing NTIS, 5285 Port Royal Road, Springfield, VA 22161. Copies of active and draft guides are available for inspection or copying for a fee from the NRC Public Document Room at 2120 L Street NW, Washington, DC; the PDR’s mailing address is Mail Stop LL-6, Washington, DC 20555; telephone (202) 634-3273; fax (202) 634-3343.
APPENDIX D
STUDENT ACADEMIC GRIEVANCE PROCEDURES
for the College of Applied Sciences and Arts
Southern Illinois University at Carbondale

GRADES GIVEN AT THE END OF A COURSE ARE FINAL AND MAY NOT BE CHANGED BY ADDITIONAL WORK OR BY SUBMITTING ADDITIONAL MATERIALS.

EXTENUATING CIRCUMSTANCES WHICH TRANSCEND PROFESSIONAL JUDGMENT OF THE INSTRUCTOR MAY BE APPEALED THROUGH PROCEDURES ESTABLISHED BY THE INSTRUCTOR'S SCHOOL OR COLLEGE. MATTERS RELATED TO FACULTY JUDGMENT IN GRADING MAY NOT BE APPEALED.

A matter relating to academic evaluation is the responsibility of the department responsible for the program in which it occurs and the office of the dean of the College of Applied Sciences and Arts. Every effort should be made to resolve such academic evaluation problems quickly and at the program level where they occur prior to director involvement.

Grades may be appealed only on procedural grounds and not on substantive grounds. Grades may not be appealed beyond the level of the dean.

Matters pertaining to evaluation of a course in which the student is or has been registered that are not resolved between the persons directly involved will be adjudicated in the following manner:

1. A student who has reason to be aggrieved will file the complaint in writing with the department chairperson responsible for the program in which the incident occurs.
 a. The complaint must be presented in sufficient detail that a proper response may be made.
 b. The complaint must be received by the department chairperson within 30 working days of the occurrence of the incident.

2. The department chairperson will submit a copy of the complaint to the other party named in the complaint within three working days.

3. The other party will respond in writing to the complaint to the department chairperson within 15 working days of receipt of the copy of the complaint.

4. The department chairperson will, within seven working days of receipt of the response to the complaint, transmit a written decision in the matter to both parties along with notification of appellate procedures. A copy of the response to the complaint will also be sent to the dean of the College. Failure of either party to respond through the appropriate appellate channels within 15 working days will be interpreted as acceptance of the decision and its implementation by the appropriate office
5. Should either party be unwilling to accept the decision of the department chairperson, an appeal may be made to the dean of the College. Such appeal must be submitted in writing within 15 working days of the receipt of the decision by the department chairperson. The appeal must specify:

 a. The original complaint;

 b. The grounds for the appeal; and

 c. Recommendation(s) for resolution of the complaint.

6. The appellant, after consultation with the dean of the College, will select one of the following procedures for adjudication:

 a. **Administrative:** The Dean of the College will review the matter with each of the parties involved and render a decision in writing within 30 working days of the review.

 b. **Panel:** The dean of the College will appoint a panel consisting of three faculty members with no administrative appointment and three students to review the matter and render a decision within 30 working days of the review. Written records of the review proceedings will be placed in the student's permanent record in the College.

7. When a decision is reached by one of the above methods, the dean of the College will notify each of the parties of the decision in writing. A copy of the decision will be filed with the student's permanent record in the College. An information copy will also be sent to the dean of the Graduate School if the matter involves a graduate student. There is no appeal for grades above the level of the college dean.
STUDENT ACADEMIC GRIEVANCE PROCEDURES

for Southern Illinois University at Carbondale

A student who believes he or she has been unreasonably denied an educational benefit due to his or her religious belief or practices may petition in writing as follows: Cases involving class attendance or class examinations that are unresolved at the class instructor level may be appealed by the student by filing a petition in writing, within thirty (30) calendar days of the incident being appealed, to the chair or coordinator of the department or program in which the course is offered. In the event the case is not resolved to the student’s satisfaction at the department/program level within five (5) working days after the chair’s receipt of the petition, the student may petition in writing to the dean of the school or college to which that teaching department or program reports. The student’s petition to the school or college level must be filed with the dean within five (5) working days of the decision at the department level. Should the case not be resolved to the student’s satisfaction at the school or college level within five (5) working days of the petition filing at that level, the student may petition the Provost. If the student is still not satisfied at that level within the five (5) working day time period, he or she may petition to the Chancellor within another five (5) working days. Decisions of the Chancellor may be appealed to the President, and to the Board of Trustees if necessary, in accordance with Bylaws of the Board of Trustees. In cases involving admissions, the grievance process should follow the time frames described above, with the initial petition being filed with the Director of Admissions, which is the only filing point prior to the Provost.
APPENDIX E
STUDENT COUNSELING FORM

Student Name: ___

Date: ___

Reason: ___

Summary of Discussion:

Plan of Action and Follow-up Date:

______________________________________ ________________________ ______________
Program Faculty Signature *Student Signature

______________________________________ ________________________ ______________
Date Date

*Your signature on this document does not indicate agreement but verifies the conversation took place.
APPENDIX F
MAGNETIC RESONANCE (MR) SAFETY SCREENING PROTOCOL

WARNING:
An MR room has a very strong magnetic field that may be hazardous to individuals entering the MR environment if they have certain metallic, electronic, magnetic, or mechanical implants, devices, or objects. Therefore, all students are required to fill out this form before going to their clinical internship. Be advised, the MR system magnet is ALWAYS on.

Do not enter the MR environment or MR system room if you have any question or concern regarding an implant, device, or object.

Please indicate if you have any of the following:
- Aneurysm clip(s)
- Cardiac pacemaker
- Implanted cardioverter defibrillator (ICD)
- Electronic implant or device
- Magnetically-activated implant or device
- Neurostimulation system
- Spinal cord stimulator
- Cochlear implant or implanted hearing aid
- Insulin or infusion pump
- Implanted drug infusion device
- Any type of prosthesis or implant
- Artificial or prosthetic limb
- Any metallic fragment or foreign body
- Any external or internal metallic object
- Hearing aid
- Other implant______________________
- Other device_______________________

Please indicate below if you have not specified any of the above:
- I have not received any implants, devices, or objects to the best of my knowledge

I attest that the above information is correct to the best of my knowledge. I have read and understand the entire contents of this form and have had the opportunity to ask questions regarding the information on this form.

Student Signature / Date
<table>
<thead>
<tr>
<th>Item</th>
<th>Criterion Evaluated</th>
<th>Possible Points</th>
</tr>
</thead>
</table>
| 1 Introduction Section | Research included introductory paragraph
 Intro included reason for writing paper (Background of problem)
 Intro motivated reader to read the paper
 Intro had an effective thesis
 Intro clearly identified areas to be discussed later in the work | 5 7 9 10 11 |
| 2 Body | Writing was clear and concise
 Discussion was understandable
 Discussion was accurate
 Discussion was logical
 Discussion sufficiently summarized each theory
 Discussion was written in 3rd person | 5 7 9 10 11 |
| 3 Conclusion | A conclusion was written
 Conclusion summarized the findings
 Conclusion written in 3rd person | 5 7 9 10 11 |
| 4 Reference Section | Appropriate references were used
 A least 10 references were cited
 All references were cited in paper
 All citations in paper had corresponding reference listed
 Reference page in AMA format | 5 7 9 10 11 |
| 5 Style (According to AMA) | Paper and references double spaced
 Paper written in correct font and font size
 Sections of paper properly headed
 Citations in text in AMA format
 Quotes were formatted and cited properly | 5 7 9 10 11 |
| 6 Grammar Vocabulary Spelling Punctuation | Vocabulary appropriate to academic/publication level
 Correct grammar used
 Punctuated correctly
 Spell check used | 5 7 9 10 11 |
| 7 General Construction | Sentence structure is correct, clear, concise and varied
 Paragraphs have a topic sentence
 Paragraphs have a transition sentences
 Unified, coherent paragraph structure
 Organized with an introduction, discussion, and conclusion/summary
 Discussion was not one continuous quote | 5 7 9 10 11 |
| 8 Research Effort | Each reference directly supports some aspect the discussion, conclusion, and summary | 5 7 9 10 11 |
| 9 Development Effort | Must include statistical analysis (if not, a minimum of 25 points will be deducted)
 Must have at least an “n” of 10 of what is being measured
 Discussion developed with clear, concrete, and relevant support
 Research met the objective of the assignment
 Work demonstrates presence of critical thought and analysis
 Research produced a meaningful discussion and conclusion
 All work was turned in on time | 5 7 9 10 11 |

Sub-Total Points

Total Points (Total Point Letter Grade Conversion: A>89, B>79, C>69, D>59, F<60)