RAD 112 - RADIOGRAPHIC ANATOMY & POSITIONING

Course Instructors: Sandi Watts, MSHA, RT(R),ARRT
Office: ASA 131
(618) 453-7229 if no answer, please leave name, message & phone number.
E-mail: sjwatts@siu.edu

COURSE DESCRIPTION:
This course is designed to instruct the student radiographer with didactic instruction leading to the development of clinical competencies. It serves as a foundation for the development of advanced clinical knowledge. The topics developed are chest, abdomen, upper and lower extremities, pelvic girdle, spine and digestive system. The bony anatomy of these areas will be stressed. Also, emphasis is placed on the soft-tissue structures demonstrated by radiographs of these areas. Routine positioning common to most health facilities will be described, demonstrated, and practiced on each other and on phantoms in energized X-ray labs.

This class must be taken concurrently with RAD 112L. If RAD 112L is dropped then RAD 112 must be dropped.

Please note: This course requires student to student, or instructor to student physical contact appropriate and necessary to demonstrate, teach, or learn the principles of radiographic positioning. Any student who is unable or unwilling to participate in such contact should discuss this concern with the course instructor immediately.

Principles of radiation protection for the patient and for the radiographer are emphasized as well. Therefore, each student is required to wear a personal radiation exposure monitoring badge (film badge; dosimeter) during each lab session. The University will supply this film badge. If the student's film badge is lost, stolen or damaged, the student is charged $10.00 to replace it.

This is a four credit hour course that meets for the full fall semester. Students are required to attend 3 hours of lecture and 2 separate lab sessions each week. The skills learned in this course will be further refined on human patients in the clinical environment, in the subsequent semesters.

At this point in the Radiologic Science Program, the student is limited to the Clinical Sites already affiliated with the radiography portion SIUC Radiologic Sciences program.

Please note: All our clinical sites are now requiring that all internship students undergo drug screening and criminal background checking prior to beginning the clinical semester. Details regarding these screenings are discussed at mid-term and during the Clinical Orientation meeting at the end of the semester. Any student who is unwilling to participate in such screenings should discuss this concern with the course instructor immediately.

Course requirements are admission to the program and consent of the Program Director. Lab fee: $75.00.

PREREQUISITES: Acceptance into RADS Program and completion of HCP 241 Human Anatomy and Physiology or its equivalent.

Co-requisite to: RAD 102, RAD 122a, & RAD 202 Prerequisite to: RAD 222 & RAD 122b
TEXTBOOKS:
Required:


OPTIONAL for RAD 112 students desiring to increase their comprehension of medical terminology:


GENERAL COURSE OBJECTIVES:
Upon completion of this course, and with 100% accuracy, the student shall be able to:

1. Describe and demonstrate the body planes and associated medical terminology.

2. Given a diagram and/or radiograph of the following anatomical structures, locate the anatomy specific to each part.
   a. finger f. humerus k. sternum
   b. hand g. shoulder l. abdomen
   c. wrist h. clavicle m. chest
   d. forearm i. scapula n. acromioclavicular
   e. elbow j. ribs
   f. joints

3. Given a diagram and/or radiograph of the following anatomical structures, locate the anatomy specific to each part.
   a. toes g. hip m. colon
   b. foot h. pelvis/S-Ijts. n. stomach
   c. ankle i. sacrum/coccyx o. esophagus
   d. lower leg j. lumbar spine p. urinary system
   e. knee k. cervical spine q. gallbladder
   f. femur l. thoracic spine

4. For each body part listed in objectives #2 & #3, demonstrate the following:
   a. proper patient care during the procedure
   b. proper positioning routine for that body part
   c. proper central ray (CR) placement, including source-image-distance
   d. proper use of radiation protection devices
   e. proper use of film/cassette size(s) and image development

RAD 112 2
5. Demonstrate competency in operating all functioning locks on the x-ray tube, table, control panel, and darkroom, for each body part listed in objectives #2 #3.

6. Given the exposure factors for a specific body part, calculate the appropriate mAs and kVp values, to produce a desirable radiograph containing an image quality that is equal to, or better than the image quality displayed in the Merrill’s positioning atlases.

7. Apply the principles and concepts of radiographic positioning in the lab and in the clinical settings.

8. Identify the anatomy visualized on radiographs produced in the lab and in the clinical settings.

9. Apply the principles of radiation protection in the lab and clinical settings.

10. Apply the terminology associated with diagnostic radiography.

11. Identify the patient preparation and the room readiness procedures required for the following exams:
   a. IVP
   b. Upper GI
   c. Lower GI
   d. Upper GI with Small Bowel series
   e. Air Contrast Lower GI
   f. Small Bowel series, alone

**GENERAL TOPICAL OUTLINE:**

I. Introduce Course & Lab Orientation

II. Positioning Terminology (Nomenclature)
   A. Body planes
   B. Body positions
   C. Related terminology

III. Exposure Factors & Radiation Protection
   A. Sources of radiation
   B. Measuring radiation
   C. Exposure factors
      1. Milliampere-seconds calculations (mAs)
      2. Kilovoltage peak (kVp)
   D. Cardinal Principles of radiation exposure
   E. Radiation dose limits
      1. Annual limit
      2. Cumulative limit
      3. Embryo-Fetus limit

IV. Upper Extremity
   A. Hand
   B. Wrist
   C. Forearm
   D. Elbow
   E. Humerus
   F. Shoulder girdle
      1. Scapula
      2. Clavicle
      3. Shoulder joint
      4. A-C Joints
V. Thoracic Cavity
   A. Ribs
   B. Chest/Lungs
   C. Sternum

VI. Abdomen
   A. Bony structures
   B. Soft tissue structures
   C. Contrast exams

VII. Lower Extremity
   A. Foot
   B. Ankle
   C. Knee and Patella
   D. Femur
   E. Pelvic girdle
      1. Hip
      2. Pelvis
      3. Sacroiliac joints (S-I Joints.)

VIII. Vertebral Column
   A. Sacrum and Coccyx
   B. Lumbar spine
   C. Thoracic spine
   D. Cervical spine

IX. Body Systems and Contrast Exams
   A. Gastrointestinal system (Digestive system)
      1. Esophagus
      2. Stomach
      3. Small intestine
      4. Colon
   B. Genitourinary system
   C. Biliary system

ACADEMIC HONESTY:
All students are expected to adhere to a strict code of academic honesty. Academic honesty is addressed according to the “Policies and Procedures Applicable to Academic Dishonesty” as stated in the “2012-2013 Guide to Important Information for Students, Faculty and Staff” pdf www.studentlife.siu.edu/Documents/Info%20Booklet%20FINAL%20for%202012-2013.pdf.

ACTS OF ACADEMIC DISHONESTY, from the “SIUC Student Conduct Code”, section II Violations, article A (www.policies.siuc.edu/documents/StudentConductCodeFINALMAY32012.pdf):
   A. Plagiarism, representing the work of another as one’s own work;
   B. Preparing work for another that is to be used as that person’s own work;
   C. Cheating by any method or means;
   D. Knowingly furnishing false information to a University official relative to academic matters;
E. Soliciting, aiding, abetting, concealing, or attempting conduct in violation of this code.

Penalties will be imposed for violations of this policy in accordance with the SIUC Student Conduct Code. These penalties may include one or more of the following disciplinary measures for a case of academic dishonesty:

- A grade of zero (0) for the assignment, lab, quiz or test.
- An “F” for the entire course.
- Recommendation of dismissal from the Program.

METHODOLOGY:

Students are required to keep current on the daily reading assignments and to complete the learning activities/review exercises for each area of the body. Student use of class positioning notes is permitted and strongly encouraged in lab on Monday and Wednesday.

Beginning the second week of the semester, there will be a Lab test (Lab Comp--a closed-book performance test) each Friday. On specific Fridays, there will be a written test during class lecture time. These tests are based on the class/lab work covered on Monday and Wednesday.

Each test (written and lab competency) will be based on the following materials:

1. Topical objectives
2. Textbook readings
3. Class notes
4. Workbook activities/Handouts

Each test (written and lab comp) will require the student to identify, apply knowledge, and make judgments based upon the learned material. Radiographs produced for a Lab Comp must demonstrate an image quality and the positioning skills equal to or better than that displayed in the Merrill's Positioning Atlases.

STUDENT EVALUATION & GRADING:

Each test score and each lab competency exam score will be converted into an appropriate percentage. For the final course grade, an average percentage will be calculated, and weighted according to the following criteria:

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five (5) Written Tests and 14 Lab Tests (Comps)</td>
<td>30%</td>
</tr>
<tr>
<td>Mid-Term Exams &amp; Final Exams (Written &amp; Lab Practical Exams)</td>
<td>70%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

During the summer between the junior and senior years, each radiography student will take the National Board Exam in Radiography, administered by the American Registry of Radiologic Technologists (ARRT). This 200 question test has a minimum passing score of 75%. Therefore, to better prepare our students to take and pass this National Board Exam, the Radiologic Sciences Program uses a grading scale that is more stringent than the rest of the University.

**Grading Scale:**

93 - 100 - A -- exceptionally high achievement 
85 - 92 - B -- high achievement 
75 - 84 - C -- satisfactory achievement 
0 - 74 - F -- unsatisfactory achievement

Each Radiography student is expected to achieve at least 80% accuracy on the written tests and Lab Comps. Any student receiving a **total score of 77% or less** on a Lab Comp **should recomp** (retest).
that exam prior to December 2, 2013. Lab recomps must be scheduled with the appropriate Lab instructor at his/her convenience.

Please note: When recomping a Lab exam, the student is expected to know how to correct the original mistakes to produce radiographs of the same quality (or better) as in the Merrill's Positioning Atlases.

All Radiography students must pass each of their Radiologic Sciences prefix courses (RAD) with a grade of “C” or better in order to satisfy Program requirements, to graduate, and to pass the National Board Exam in Radiography. This grade of “C” or better is based upon the Radiologic Sciences grading scale.

Any Radiography student that fails a Radiologic Sciences course will not continue in our Program. When course failure occurs, the student will meet with the appropriate faculty member and academic advisor to discuss the student's future educational plans/goals. This discussion may include referring the student to the University Career Services office www.siu.edu/~ucs; Woody Hall B204; Ph: 618-453-2391) for testing via the “Strong Interest Inventory” to identify the academic majors that best fit the student’s personality, values, interests, and skills.

ADA Accommodations:
Under the Americans with Disabilities Act (ADA) and Section 504 of the Rehabilitation Act, educators and students have both rights and responsibilities. It should be the mutual goal of the student and the university to maximize the likelihood that students with disabilities succeed. Accommodation sometimes is necessary.

If you think you have a learning disability or know you have a disability but have not been tested, then please contact SIUC Disability Support Services at 453-5738 for an appointment for the evaluation of your learning disability.

Once you have been diagnosed as having a learning disability, we, the faculty of the Radiologic Sciences Program, strongly encourage you to tell us what type of learning disability and what type of accommodation is needed to help you succeed in our Program. If you do not notify us (prior to the end of the first week of the semester) that you have a disability, and you do not request accommodation during this course, then you accept full responsibility for your own success or failure in this course.

Ultimately, **YOU are responsible for your own success or failure and the resulting consequences.**

ATTENDANCE:
Please note:

1. Due to the frequently graphic content presented in this course, bringing infants and/or children to class/lab is strongly discouraged!

2. Please turn off all cell phones, MP3 players, PDAs, iPods, headsets, pagers, beepers, all other personal communication devices, and remove all types of earphones/earbuds!! If it's necessary to be in constant communication with your children, their schools, business associates, spouse, friends, etc., then, now is not the right time for you to be pursuing our Radiologic Sciences Program.

A record of daily attendance is kept. **Attendance, both to class and labs, is mandatory for this course.** Habitual tardiness to lecture and/or lab will result in points being deducted from each final grade. **Each late arrival or absence will result in 0.5 point, daily, deducted from the student’s final grade.**
Any student that misses class is responsible for the material covered. He or she should get notes from other students and contact the course instructor for the missing material.

During the semester, if a student chooses to drop out of the Radiologic Sciences program, or this course, that student must meet with the course instructor to discuss the student's reasons for leaving the course.

Keep in mind that dropping below "full-time" status will jeopardize the student's bank loans, financial aid, scholarships, Veterans benefits, housing, academic standing, time to degree, athletic status and/or international student visa. Since thoughts and feelings often influence a student's behavior and academic performance, any student having doubts or second thoughts about continuing in this Program should talk to any of the Radiologic Sciences faculty.

**Building Emergency Response Protocols**

**University’s Emergency Procedure Clause:**
Southern Illinois University Carbondale is committed to providing a safe and health environment for study and work. Because some health and safety circumstances are beyond our control, we ask that you become familiar with the SIUC Emergency Response Plan and Building Emergency Response Team (BERT) program. Emergency response information is available on posters in buildings on Campus, available on the BERT website, [www.bert.siu.edu](http://www.bert.siu.edu), the Department of Public Safety’s website, [www.dps.siu.edu](http://www.dps.siu.edu) (disaster drop down) and in the Emergency Response Guidelines pamphlet, “Know how to respond to each type of emergency”.

Instructors will provide guidance and direction to students in the classroom and X-ray labs in the event of an emergency affecting your location. **It is important that you follow these instructions and stay with your instructor during an evacuation or sheltering emergency.** The Building Emergency Response Team will provide assistance to your instructor in evacuating the building or sheltering within the facility.

**Disabled Students:**
Instructors and students in the class will work together as a team to assist disabled students out of the building safely. Disabled students will stay with the instructor and communicate with the instructor what is the safest way to assist them.

**Earthquake:**
In the event of an earthquake you are advised to take cover quickly under heavy furniture or near an interior wall, a corner, to avoid falling debris. Outside the building are trees and power lines and debris from the building itself that you will need to stay away from. In the building, large open areas like auditoriums are the most dangerous. Do not try to escape on a stairway or elevator. Do not hide under a stairway. We do not recommend that you stand in a doorway because the door could shut from the vibrations and crush your fingers trapping you there.

**Fire:**
**During the fall semester we have a Fire Drill.**
Pick up your belongings and your instructor will lead you to either the North or South parking lot depending on what part of the building your class is in. You must stay with your instructor so he/she can take roll calls. As soon as the building is all clear, you will be allowed to return to class.

**These drills are to train instructors and the Building Emergency Response Team to get everyone to a safe place during an emergency.**
Tornado:
During the spring semester we have a Storm Drill.
Pick up your belongings and your instructor will lead you to a safe area of the basement. No one will be allowed to stay upstairs. Stay away from windows. The drill should not last more than 10 minutes. You must stay with your instructor so he/she can take roll calls. Students need to be quiet in the basement as the BERT members are listening to emergency instructions on handheld radios and cannot hear well in the basement.

Bomb Threat:
If someone calls in a bomb threat, class is suspended and students will be asked to pick up their belongings, evacuate the building and leave the premises. Do not leave anything that is yours behind. We will not allow anyone back into the building until the police and bomb squad give us an all clear. DO NOT USE YOUR CELL PHONES. Some bombs are triggered by a cell phone signal.

Shooter in the Building:
When it is safe to leave, move to a safe area far from the building where the shooter is located. If you have any information about the shooter, please contact the police after you return home. If you cannot leave, go into a room, lock the door, turn out the lights, and if possible, cover the glass on the door. Silence all cell phones after one person in the room you are in calls the police and informs them of your location and how many are in the room. Be quiet and wait for the police to arrive. The police are looking for one or more shooters, and they have no way of knowing if the shooter is in the room with you. For that reason, when the police enter the room, no one should have anything in his/her hands and each person MUST raise his/her hands above his/her head.

Women’s Self-Defense Class:
For interested female students and female faculty and staff, the SIU Public Safety Department sets up free self-defense classes. The SIU Public Safety Department will be teaching this class. They teach a free class in the fall and spring at the Rec Center. In the fall you would register at the Rec Center for the Women’s Self-Defense Class or RAD (Rape Aggression Defense) as it is sometimes called. If you have questions about registering for the class, you can send an email to lavong@siu.edu. LaVon is the contact in the Dean’s Office in the Communications building that will assist you to try to find the class you need.
### TIME FRAMES & WORK RESPONSIBILITIES

**August 19 – December 11, 2013**

**BOLD font indicates Lab activity**

<table>
<thead>
<tr>
<th>DATE</th>
<th>LECTURE</th>
<th>ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 18, 2014</td>
<td><strong>1st Week</strong></td>
<td>First Week Survival HO</td>
</tr>
<tr>
<td></td>
<td>Introduce course &amp; syllabus;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduce Educational Survival Skills.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sign-Up for 1 X-ray Lab Orientation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meet in ASA room C011B—the larger X-ray Lab—for this Orientation, at the specified time.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>The official X-ray Labs begin the 2nd week of the semester: the week of August 26, 2013.</em></td>
<td></td>
</tr>
<tr>
<td>Aug. 20</td>
<td>Radiation Protection Video</td>
<td>Topical Obj.;</td>
</tr>
<tr>
<td></td>
<td>Introduce Vocabulary Terms</td>
<td>Merrill’s 12th ed. Vol. 1, Chapt. 3.</td>
</tr>
<tr>
<td>Aug. 22</td>
<td>Film Badge Application forms to complete</td>
<td>Selected Handouts;</td>
</tr>
<tr>
<td></td>
<td>Finish Educ. Survival, as needed.</td>
<td></td>
</tr>
<tr>
<td>Aug. 25</td>
<td><strong>2nd Week</strong></td>
<td>Merrill’s Vol. 1, Chapt. 4;</td>
</tr>
<tr>
<td></td>
<td>Hand &amp; Wrist Positioning;</td>
<td>Frank et al, Vol. 1, Chapt. 4.</td>
</tr>
<tr>
<td></td>
<td><strong>Film Hand &amp; Wrist</strong></td>
<td></td>
</tr>
<tr>
<td>Aug. 27</td>
<td>Continue Hand &amp; Wrist Positioning</td>
<td>Course Outline &amp;</td>
</tr>
<tr>
<td></td>
<td><strong>Hand &amp; Wrist Filming continued.</strong></td>
<td>Topical Objectives.</td>
</tr>
<tr>
<td>Aug. 29</td>
<td><strong>TEST #1 on Education Survival Skills, Vocabulary Terms,</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Hand &amp; Wrist Positioning &amp; Anatomy.</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Test Hand &amp; Wrist</strong></td>
<td></td>
</tr>
<tr>
<td>Sept. 1, 2014</td>
<td><strong>3rd Week</strong></td>
<td>Topical Objectives &amp;</td>
</tr>
<tr>
<td></td>
<td><strong>LABOR DAY – NO SCHOOL</strong></td>
<td>Course Outline.</td>
</tr>
<tr>
<td>Sept. 2 (Tuesday)</td>
<td>Labor Day Make-Up Labs in Afternoon for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Film Forearm &amp; Elbow</strong></td>
<td></td>
</tr>
<tr>
<td>Sept. 3(Wednesday)</td>
<td>Forearm &amp; Elbow lecture;</td>
<td>Merrill’s Vol. 1, Chapt. 4;</td>
</tr>
<tr>
<td></td>
<td><strong>Film Forearm &amp; Elbow</strong></td>
<td>Frank et al, Vol. 1, Chapt. 4.</td>
</tr>
<tr>
<td>Sept. 4 (Thursday)</td>
<td>Labor Day Make-Up Labs in Afternoon (if needed) for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Film Forearm &amp; Elbow</strong></td>
<td></td>
</tr>
<tr>
<td>Sept. 5</td>
<td>Finish Forearm &amp; Elbow;</td>
<td>See Course Outline &amp;</td>
</tr>
<tr>
<td></td>
<td>Start Humerus lecture.</td>
<td>Topical Outline.</td>
</tr>
<tr>
<td></td>
<td><strong>Test Forearm &amp; Elbow</strong></td>
<td></td>
</tr>
<tr>
<td>Sept. 8</td>
<td><strong>4th Week</strong></td>
<td>Merrill’s Vol. 1, Chapt. 3–5.</td>
</tr>
<tr>
<td></td>
<td>Finish Humerus; Start Shoulder Girdle &amp; Joints of Upper Extremity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Film Humerus &amp; Shoulder</strong></td>
<td>Frank et al, Vol. 1, Chapt. 4-5.</td>
</tr>
<tr>
<td>Sept. 10</td>
<td>Shoulder &amp; Scapula positioning;</td>
<td>Course outline &amp;</td>
</tr>
<tr>
<td></td>
<td><strong>Film Humerus &amp; Shoulder</strong></td>
<td>Topical Objectives.</td>
</tr>
</tbody>
</table>

**RAD 112**

<table>
<thead>
<tr>
<th>DATE</th>
<th>LECTURE</th>
<th>ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 12</td>
<td><strong>TEST #2</strong> on Positioning &amp; Anatomy of Forearm, Elbow, Humerus &amp; Joints of Upper Extremity. <strong>Test Humerus &amp; Shoulder</strong></td>
<td></td>
</tr>
<tr>
<td>Sept. 15</td>
<td>5th Week&lt;br&gt;Start Clavicle, A-C Joints &amp; Rib lecture. <strong>Film Scapula &amp; Clavicle</strong></td>
<td>Merrill’s Vol. 1, Ch. 5 &amp; 9. Frank et al, Vol. 1, Ch. 5 &amp; 9.</td>
</tr>
<tr>
<td>Sept. 17</td>
<td>Finish Clavicle &amp; A-C joints lecture; <strong>Film Scapula &amp; Clavicle</strong></td>
<td>Same as above.</td>
</tr>
<tr>
<td>Sept. 19</td>
<td>Finish Rib lecture; Review Shoulder Girdle, Review Exposure Factors (mA, kVp, Time &amp; SID). <strong>Test Scapula &amp; Clavicle</strong></td>
<td>Same as above.</td>
</tr>
<tr>
<td>Sept. 22</td>
<td>6th Week&lt;br&gt;Start Chest lecture; <strong>Film Ribs</strong></td>
<td>Merrill’s Vol. 1, Ch. 9-10. Frank et al, Vol. 1, Ch. 3, 9-10.</td>
</tr>
<tr>
<td>Sept. 24</td>
<td>Finish Chest lecture; <strong>Film Ribs</strong></td>
<td>See Course Outline &amp; Topical Objectives.</td>
</tr>
<tr>
<td>Sept. 26</td>
<td><strong>Test #3</strong> on Positioning &amp; Anatomy of Shoulder Girdle, &amp; Ribs <strong>Test Ribs</strong></td>
<td></td>
</tr>
<tr>
<td>Sept. 29</td>
<td>7th Week&lt;br&gt;Start Abdomen lecture; <strong>Film Chest &amp; Abdomen</strong></td>
<td>Merrill’s Vol. 1, Ch. 10&lt;br&gt;Merrill’s Vol. 2, Ch. 16-18. Frank et al, Ch. 16-18.</td>
</tr>
<tr>
<td>Oct. 1, 2014</td>
<td>Continue Abdomen <strong>Film Chest &amp; Abdomen</strong></td>
<td>Topical Objectives.</td>
</tr>
<tr>
<td>Oct. 3</td>
<td>Finish Abdomen <strong>Test Chest &amp; Abdomen</strong></td>
<td>Same as above.</td>
</tr>
<tr>
<td>Oct. 6 (Monday)</td>
<td>8th Week&lt;br&gt;Start Rad. Protection <strong>Start Lab Practical Exams</strong></td>
<td></td>
</tr>
<tr>
<td>Oct. 8 (Wednesday)</td>
<td>Finish Rad. Protection <strong>Continue Lab Practical Exams</strong></td>
<td>Review &amp; testing of previous assignments.</td>
</tr>
<tr>
<td>Oct. 10 (Friday)</td>
<td>Written Mid-term Exam <strong>Finish Lab Practical Exams</strong></td>
<td>Review &amp; testing of previous assignments.</td>
</tr>
<tr>
<td>Oct. 11 - 14</td>
<td><strong>FALL BREAK – NO SCHOOL</strong></td>
<td></td>
</tr>
<tr>
<td>Oct. 15 (Wednesday)</td>
<td>9th Week&lt;br&gt;Start Toes, Foot &amp; Ankle lecture  <strong>Film Foot &amp; Ankle</strong></td>
<td>Merrill’s Vol. 1, Chapt. 6.</td>
</tr>
<tr>
<td>DATE</td>
<td>LECTURE</td>
<td>ASSIGNMENT</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Oct. 16 (Thursday)</td>
<td>Make-Up Labs in Afternoon for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Film Foot &amp; Ankle</strong></td>
<td></td>
</tr>
<tr>
<td>Oct. 17</td>
<td>Finish Ankle. Rad Measuring Units; Start Lower Leg &amp; Knee lecture;</td>
<td>Topical Objectives</td>
</tr>
<tr>
<td></td>
<td><strong>Test Fook &amp; Ankle</strong></td>
<td>Course Outline.</td>
</tr>
<tr>
<td>Oct. 20</td>
<td>10th Week</td>
<td>Merrill’s Vol. 1, Chapt. 6;</td>
</tr>
<tr>
<td></td>
<td>Finish Lower Leg &amp; Knee lecture;</td>
<td>Frank et al, Vol. 1, Chapt. 6.</td>
</tr>
<tr>
<td></td>
<td><strong>Film Lower Leg &amp; Knee</strong></td>
<td></td>
</tr>
<tr>
<td>Oct. 22</td>
<td>Start Femur lecture.</td>
<td>Topical Objectives</td>
</tr>
<tr>
<td></td>
<td><strong>Film Lower Leg &amp; Knee</strong></td>
<td>Course Outline</td>
</tr>
<tr>
<td>Oct. 24</td>
<td><strong>Test #4 on Positioning &amp; Anatomy of Foot, Ankle, Lower Leg &amp; Knee</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Test Lower Leg &amp; Knee</strong></td>
<td></td>
</tr>
<tr>
<td>Oct. 27</td>
<td>11th Week</td>
<td>Merrill’s Vol. 1, Chapt. 7-8.</td>
</tr>
<tr>
<td></td>
<td><strong>Film Femur &amp; Hip</strong></td>
<td></td>
</tr>
<tr>
<td>Oct. 29</td>
<td>Finish Pelvis &amp; S-I Joints;</td>
<td>Same as above.</td>
</tr>
<tr>
<td></td>
<td>Start Sacrum &amp; Coccyx</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Film Femur &amp; Hip</strong></td>
<td></td>
</tr>
<tr>
<td>Oct. 31</td>
<td>Finish Sacrum &amp; Coccyx;</td>
<td>Merrill’s Vol. 1, Chapt. 7-8.</td>
</tr>
<tr>
<td></td>
<td><strong>Test Femur &amp; Hip</strong></td>
<td>Frank et al, Vol. 1, Chapt. 7-8.</td>
</tr>
<tr>
<td>Nov. 3, 2014</td>
<td><strong>12th Week</strong></td>
<td>Topical Objectives</td>
</tr>
<tr>
<td></td>
<td>Start Lumbar Spine lecture;</td>
<td>Course Outline</td>
</tr>
<tr>
<td></td>
<td><strong>Film Pelvis &amp; S-I Joints</strong></td>
<td></td>
</tr>
<tr>
<td>Nov. 5</td>
<td>Finish Lumbar Spine.</td>
<td>Topical Objectives</td>
</tr>
<tr>
<td></td>
<td><strong>Filming Pelvis &amp; S-I Joints</strong></td>
<td>Course Outline</td>
</tr>
<tr>
<td>Nov. 7</td>
<td>**Test #5 on Positioning &amp; Anatomy of Patella, Femur, Hip, Pelvis &amp;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiation Measuring Units.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Test Pelvis &amp; S-I Joints</strong></td>
<td></td>
</tr>
<tr>
<td>Nov. 10 (Monday)</td>
<td><strong>13th Week</strong></td>
<td>Topical Objectives on the Bony Vertebral Column.</td>
</tr>
<tr>
<td></td>
<td>Start Thoracic Spine</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Film Sacrum &amp; Coccyx</strong></td>
<td></td>
</tr>
<tr>
<td>Nov. 12</td>
<td>Continue Thoracic Spine;</td>
<td>Topical Objectives on the Bony Vertebral Column.</td>
</tr>
<tr>
<td></td>
<td><strong>Film Sacrum &amp; Coccyx</strong></td>
<td></td>
</tr>
<tr>
<td>Nov. 14</td>
<td>Finish Thoracic Spine;</td>
<td>Topical Objectives on the Bony Vertebral Column.</td>
</tr>
<tr>
<td></td>
<td>Start Cervical Spine</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Test Sacrum &amp; Coccyx</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>LECTURE</th>
<th>ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 17</td>
<td>14th Week</td>
<td><strong>Test #5 on Positioning &amp; Anatomy of Patella, Femur, Hip, Pelvis &amp; Radiation Measuring Units.</strong> Begin Filming Lumbar Spine</td>
</tr>
<tr>
<td>Nov. 19</td>
<td>Continue Cervical Spine.</td>
<td>Topical Objectives on the Bony Vertebral Column.</td>
</tr>
<tr>
<td>Nov. 21</td>
<td>Finish Cervical Spine.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Nov. 24</td>
<td>15th Week</td>
<td>Begin Contrast Exams</td>
</tr>
<tr>
<td>Nov. 26-30</td>
<td>NO SCHOOL</td>
<td>THANKSGIVING BREAK</td>
</tr>
<tr>
<td>Dec. 1, 2014</td>
<td>16th Week</td>
<td>Course Outline &amp; Topical Objectives.</td>
</tr>
<tr>
<td>Dec. 3</td>
<td>Continue Contrast Exams</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Dec. 5</td>
<td>Finish Contrast Exams</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Dec. 8 (Monday)</td>
<td>17th Week</td>
<td><strong>Open Labs late Friday afternoon for students having Lab Final on Mon., Dec. 8th??</strong></td>
</tr>
<tr>
<td>Dec. 9 (Tuesday)</td>
<td><strong>Open Labs for students having Lab Final, Wed., Dec. 10th??</strong></td>
<td></td>
</tr>
<tr>
<td>Dec. 10 (Wednesday)</td>
<td><strong>Finish Lab Practical exam.</strong></td>
<td></td>
</tr>
<tr>
<td>Dec. 11 (Thursday)</td>
<td>Clinical Handbook Review, 10am-12noon, ASA room C0014.</td>
<td>RADS Clinic Handbook ATTENDANCE IS MANDATORY FOR ALL RADIOLOGIC SCIENCES STUDENTS.</td>
</tr>
<tr>
<td>January 20, 2015</td>
<td>Begin RAD 222 Radiography Clinic 1.</td>
<td></td>
</tr>
</tbody>
</table>

All requests to change Clinical Site assignments must be submitted in writing, to Miss Szekely. Each “request to change” MUST state your specific reasons for wanting to change clinical sites. Verbal “request to change” will not be recorded nor honored.
Faculty Expectations of RAD 112 students

1. **Retain knowledge and principles of:**
   - Basic algebra for exposure factor calculations;
   - Anatomy & physiology—RAD 112 takes anatomy to a deeper level;
   - Medical terminology & directional terminology;
   - X-ray physics (RAD 202)—some principles have direct application to Lab work; and,
   - X-ray techniques (RAD 102)—some principles have direct application to Lab work.

2. **Retain current passwords AND access to your siu.edu E-mail account, AND to any other E-mail account you use most frequently.**
   - SIUC administration & faculty expect you to check your siu.edu E-mail & any other E-mail account at least 2x per week, if not daily.
   - Make sure your all your RADS faculty E-mail addresses, including Mr. Broomfield, are identified as ‘safe’ addresses by all your E-mail providers.
   - Make sure all RADS faculty have the E-mail addresses that you use/check most frequently.

3. **Pay attention to and keep up with ALL deadlines & due dates for paperwork.**

4. **Keep your RAD 122a/b Ehrlich & Daley Patient Care book. You’ll need it for RAD 112 Lab Orientation AND for both of your clinical semesters: RAD 222 & RAD 332.**

5. **Punctuality vs. Tardiness**
   - ✓ All RADS students are expected to report to class, to Lab and to the clinical facility at the designated time.
   - ✓ Punctuality is a simple way to prove that you are dependable and reliable, two desirable character qualities that are priceless to your Clinical faculty.
   - ✓ Tardiness is not responsible professional behavior. Habitual tardiness demonstrates:
     - Lack of respect. Lateness cheats classmates of their time.
     - It implies that you are selfish with your time.
     - Lack of organization.
   - ✓ Each late arrival will be considered the equivalent of one absence for grade determination. **A record of daily attendance will be kept. Attendance, both to class and labs, is mandatory for this course.**
   - ✓ Each late arrival or absence will result in 0.5 point, daily, deducted from the student’s final grade.

   - ✓ During the clinical semesters, all absences must be made up prior to the end of Final Exam Week.
     - It is the student's responsibility to call the Clinical Instructor within 15-30 minutes of the beginning of the clinical time period if you are not going to be present or if you are going to be late.
     - Failure to do this will be noted on your Behavior Evaluation and will jeopardize your clinical grade.
6. Each radiography student has signed up for either a 60 minute Lab on Monday or Wednesday, and for a 30 minute Lab on Friday for testing. During the 60 minute Labs, each student will practice on his/her lab partner and image the phantom(s) for the designated body part(s). The 30-minute Friday Labs will be for testing on the designated body parts.

The responsibilities of the RADS student are:

a. Modest attire/modest clothing of all students is required in all RAD Labs & Lectures.
   (1) Modest attire demonstrates
       o Respect for yourself and for others;
       o A competent professional appearance that backs up your body language & oral communication skills.
   (2) Trendy and/or provocative clothing are not acceptable because they create an unprofessional appearance and a hostile learning environment.
       (a) Examples of unsuitable attire include, but are not limited to,
           • Low cut neck lines,
           • Bare midriffs
           • High cut hem lines,
           • Low slung jeans/shorts,
           • Waistbands below the hips,
           • Exposed abdomen,
           • Exposed glutteal fold,
           • Exposed underwear, etc.

b. When in doubt, look at yourself in a full-length mirror, and ask:
   ▪ “Would this outfit/set of garments inspire confidence in my professionalism if I were a hospital patient, physician, or another healthcare worker?”
   ▪ “Would this outfit/set of garments be so distracting that it would interfere with my verbal patient instructions?”

c. Arrive on time and be prepared for the day's Lab activities.
   (1) Review/read notes and Merrill’s PRIOR to each Lab session.
       (a) Don’t study technique or physics while waiting for your Lab session.
   (2) Bring positioning notes and Merrill’s textbook to each Lab session.
   (3) Late arrivals, lack of preparation, and/or lack of notes/Merrill’s will not be tolerated. Such behavior will result in the student being expelled from Lab for that day and that student will receive a 0 (zero) as the grade for the day's Lab work.
7. TECHNICAL COMPETENCIES
During the course of the clinical semester, the student shall be able to:

a. Use oral and written medical communication;

b. Demonstrate knowledge of human structure, function and pathology;

c. Anticipate and provide basic patient care and comfort;

d. Apply the principles of body mechanics;

e. Perform basic mathematical functions;

f. Operate radiographic imaging equipment and accessory devices;

g. Position the patient and imaging system to perform radiographic exams and procedures;

h. Modify standard procedures to accommodate for patient condition and other variables;

i. Correctly process radiographs to obtain diagnostic quality radiographs;

j. Determine exposure factors to obtain diagnostic quality radiographs with minimum radiation exposure;

k. Adapt exposure factors for various patient conditions, equipment, accessories, and contrast media to maintain appropriate radiographic quality;

l. Practice radiation protection for the patient, self and others;

m. Recognize emergency patient conditions and initiate first-aid and basic life-support procedures;

n. Evaluate radiographic images for appropriate positioning and image quality; and,

o. Evaluate the performance of radiographic systems, know the safe limits of equipment operation, and report malfunctions to the proper authority.